1.已知sinα=4sin(α+β)求证:tan(α+β)=sinβ/cosβ-4.2.已知o为坐标原点.OA=(2COS²X,1),OB=(1√3sin2x+a)(x∈R,a为常数)若y=OA·OB.①求y关于x的函数解析式f(x).②若f(x)的最大值为2,求a的值,并指出f(x)的单调

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:57:11
1.已知sinα=4sin(α+β)求证:tan(α+β)=sinβ/cosβ-4.2.已知o为坐标原点.OA=(2COS²X,1),OB=(1√3sin2x+a)(x∈R,a为常数)若y=OA·OB.①求y关于x的函数解析式f(x).②若f(x)的最大值为2,求a的值,并指出f(x)的单调
xAnPUek]mnu+U&A$EIC)J(8ͳ f_eճ>ex^̕x37=[Q]HxUfyqe"'m8 w. Փv^|ˤ8eCf3sOZZM4_rj<.jTωژ`c7 )~~u ߱Z EgI>Q@uAIC􀃻[Z7WBѰ$ K"XvxtPI@<#}ۥM ]=aU7>?JqMqC,C.Ucĥ)=20dt\ ~&;Pݓ[ N Z{?#ծih'=@:ΝI,PPs_ ^}pLDP@dŭ?f&[L|rC7ig5 0q#}k ! KvPf?

1.已知sinα=4sin(α+β)求证:tan(α+β)=sinβ/cosβ-4.2.已知o为坐标原点.OA=(2COS²X,1),OB=(1√3sin2x+a)(x∈R,a为常数)若y=OA·OB.①求y关于x的函数解析式f(x).②若f(x)的最大值为2,求a的值,并指出f(x)的单调
1.已知sinα=4sin(α+β)求证:tan(α+β)=sinβ/cosβ-4.
2.已知o为坐标原点.OA=(2COS²X,1),OB=(1√3sin2x+a)(x∈R,a为常数)若y=OA·OB.
①求y关于x的函数解析式f(x).②若f(x)的最大值为2,求a的值,并指出f(x)的单调区间

1.已知sinα=4sin(α+β)求证:tan(α+β)=sinβ/cosβ-4.2.已知o为坐标原点.OA=(2COS²X,1),OB=(1√3sin2x+a)(x∈R,a为常数)若y=OA·OB.①求y关于x的函数解析式f(x).②若f(x)的最大值为2,求a的值,并指出f(x)的单调
1.下次不要漏了括号 此题的关键是那个4 两个等式都有 将4=sinα/sin(α+β)整体代入sinβ/(cosβ-4)化简可得.tan(α+β)即证
2.你应该是不会化简吧 将2COS²X化为1+cos2x
再将cos2x 与√3sin2x合并 提取2 得2sin(2x+30)
下面就简单了 自己考虑下吧