设数列{an}的前n项和为Sn,S1,S2,S3.Sn成等比数列,试问a2,a3.an成等比数列吗?证明你的结论.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:22:57
设数列{an}的前n项和为Sn,S1,S2,S3.Sn成等比数列,试问a2,a3.an成等比数列吗?证明你的结论.
xŐON@Ưqʔv;ClXxgiLj $i Z]+T< 3 +az]{3wd)V&V cfpS puSq(P14NѤ<| ND9-&[D[

设数列{an}的前n项和为Sn,S1,S2,S3.Sn成等比数列,试问a2,a3.an成等比数列吗?证明你的结论.
设数列{an}的前n项和为Sn,S1,S2,S3.Sn成等比数列,试问a2,a3.an成等比数列吗?证明你的结论.

设数列{an}的前n项和为Sn,S1,S2,S3.Sn成等比数列,试问a2,a3.an成等比数列吗?证明你的结论.
不一定,当S1,S2,S3.Sn都相等时,a2,a3.an为0数列,不成等比.当S1,S2,S3.Sn公比不为1时,an=sn-s(n-1)不为0,则有a(n+1)/an=[s(n+1)-s(n)]/[s(n)-s(n-1)]=(q-1)sn/(q-1)s(n-1)=sn/s(n-1)=q,q为[sn]的公比.所以

不能

设数列{an}的前n项和为Sn 已知1/S1+1/S2+ 设数列an的前n项和为sn,若s1=1,s2=2,且s(n+1)-3sn+2s(n-1)=0,判断数列an是不是等比数列 设数列{an}前n项和为Sn,且满足S1=2,S(n+1)=3Sn+2.一,证明数列是等比数列并...设数列{an}前n项和为Sn,且满足S1=2,S(n+1)=3Sn+2.一,证明数列是等比数列并求出通项?二,求数列{nan}的前n项的和Tn 设数列{an}前n项和为Sn,已知(1/S1)+(1/S2)+.+(1/Sn)=n/(n+1),求S1,S2及Sn急 设数列an的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列设数列an的前n项和为Sn,已知S1=1,S(n+1)/Sn=(n+c)/n,且a1,a2,a3成等差数列求:1、求c的值2、求数列an的通项公式3、求人解答 数列{an}的前n项和Sn构成了一个新的数列:S1,S2,S3,...Sn...,则S1=?Sn=S(n-1)+? 设数列{an}的前n项和为Sn,S1,S2,S3.Sn成等比数列,试问a2,a3.an成等比数列吗?证明你的结论. 设数列{an}的前n项和为Sn,且Sn²-2Sn-anSn+1=0,n=1,2,3...1.求s设数列{an}的前n项和为Sn,且Sn²-2Sn-anSn+1=0,n=1,2,3...1.求sn与s(n-1)(n≧2)的关系式,并证明{1/(1/sn-1)}是等差数列2.求s1×s2×s3.s2010×s2011的值 设数列{an}的前n项和为Sn,且an不等于0,S1,S2,S3 Sn成等比数列,试问a1,a2,a2是等比数列吗 设数列an的前n项和为Sn,若S1=1,S2=1且S(n+1)-3S+2S(n-1)=0,求an通项公式 求过程、 设数列an的前n项和为Sn,且S1=2,S<n 1>-Sn=Sn 2=bn求证数列bn是等比数列 求数列an的通项公式S<n+1>-Sn=Sn+2=bn 设数列{an}的前n项和为Sn,且满足S1=2,S(n+1)=3Sn+2(n=1,2,3) 设bn=2,S(n+1)=3Sn+2(n=1,2,3.) 注:n+1设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3) 设bn=2,Sn+1=3Sn+2(n=1,2,3.)设bn=an比Sn平方,求证b1+b2+b3.bn 设数列an的前n项和为sn,且s1=2,sn+1-sn=sn+2=bn(n∈N*) 1求正:数列bn是等比数列 ​设数列an的前n项和为sn,且s1=2,sn+1-sn=sn+2=bn(n∈N*)1求正:数列bn是等比数列第二问求数列an的通项公式等号左 设数列an的前n项和为sn,已知s1=1,sn分之sn+1=n分之n+c且a1,a2,a3为等差数列.求c的值.求数列an的通项公式 设数列an的前n项和为sn 且s1=2 sn+1=2sn+2 bn=sn+2 求bn是等比数列求bn是等比数列2 求数列an的通项公式 设数列{an}的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n(c为常数,c不等于1,n属于正整数)设数列{an}的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列.c=2,an=n若数列{bn}是首项为1,公比为c的等比数列,记A 已知数列an的前n项和Sn=n(2n-1)(n∈N*). (1)证明数列an为等差数列; (2)设数列bn=S1+S2/2+S3/3+…已知数列an的前n项和Sn=n(2n-1)(n∈N*). (1)证明数列an为等差数列;(2)设数列bn=S1+S2/2+S3/3+…+Sn 设数列An的前n项和为Sn,若Sn是首项为S1,各项均为正数且公比为q的等比数列求An的通项公式用S1和q表示