在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求 AB+CDGH的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:12:14
在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求 AB+CDGH的
xT]O`+o0pC~VVm;L?661ٌWJF5 D"Q$|dğۼ_m;: M|Sʾ>ףjdN_,}vZA:͏F~s8 3ȹgH}6#<(#JtDPU *,(_p9a~ד 3aara0BVb8'8A ++9/G˼(,#ۼ,t$XJwJ%{-,cIFXDs\Z`,3,9>9Ikbr*N+'Ep`ku\9F'8D Cx8hAPa,'BIFC Di&LHPC09D"18';k!]dK xiuFXԵ`9yl3 !F(=` yl"aW~{xk

在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求 AB+CDGH的
在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.
(1)求证:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直线EF与线段AD,BC分别相交于点G,H,求 AB+CDGH的值.

在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.(1)求证:△FOE≌△DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求 AB+CDGH的
(1)∵EF是△OAB的中位线,
∴EF∥AB,EF= 1/2AB,
而CD∥AB,CD= 1/2AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC;
(2)∵在Rt△ABC中,AC=根号AB²+BC²= 根号4BC²+BC²= 根号5BC,
∴sin∠OEF=sin∠CAB= BC/AC= 1/根号5= 根号5/5;
(3)∵AE=OE=OC,EF∥CD,
∴△AEG∽△ACD,
∴ EG/CD= AE/AC= 1/3,即EG= 1/3CD,
同理FH= 1/3CD,
∴ (AB+CD)/GH= (2CD+CD)/(CD/3+CD+CD/3)= 9/5.

(1)证明:∵EF是△OAB的中位线,
∴EF∥AB,EF=1 2 AB,
而CD∥AB,CD=1 2 AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC;
(2)∵在Rt△ABC中,AC= AB2+BC2 = 4BC2+BC2 = 5 BC,
∴sin∠OEF=sin∠CAB=BC AC =1 5 = 5 5...

全部展开

(1)证明:∵EF是△OAB的中位线,
∴EF∥AB,EF=1 2 AB,
而CD∥AB,CD=1 2 AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC;
(2)∵在Rt△ABC中,AC= AB2+BC2 = 4BC2+BC2 = 5 BC,
∴sin∠OEF=sin∠CAB=BC AC =1 5 = 5 5 ;
(3)∵AE=OE=OC,EF∥CD,
∴△AEG∽△ACD,
∴EG CD =AE AC =1 3 ,即EG=1 3 CD,
同理FH=1 3 CD,
∴AB+CD GH =2CD+CD CD 3 +CD+CD 3 =9 5 .

收起