.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值(2)若e1,e2是夹角为60°的.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值已求出=±二分之根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 11:46:42
.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值(2)若e1,e2是夹角为60°的.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值已求出=±二分之根
xRN"A~0tk40>$3nJVЀ/ Ah0JL|z-lԃ'I*5{й~>WwyUjӱAɨZ1k$"P]v ר@o&/X_5XZ;I̯ns U7XEWR+*~ϋqnayh^98_oQH.;VU[)]WDL3*q^)"NB@ǟeĀM-b~L0ZSa#H\hb{4!F#QH65aTz6|J(CFTh!' jƆMilQ}qw#M†k!˘g:YR:ϷY Z}9 ބ3tl l{3XAq.sJ)??G?/\

.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值(2)若e1,e2是夹角为60°的.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值已求出=±二分之根
.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值(2)若e1,e2是夹角为60°的
.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值
已求出=±二分之根号二
(2)若e1,e2是夹角为60°的单位向量.当入大于等于0时.求a*b的最大值

.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值(2)若e1,e2是夹角为60°的.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值已求出=±二分之根
(1)ab共线,则有a=kb
即有e1+入e2=-2k入e1-ke2
故有1=-2k入,入=-K
即有入^2=1/2
即入=土根号2/2
(2)
e1*e2=|e1||e2|cos60=1/2
a*b=(e1+入 e2)*(-2入e1-e2)=-2入e1^2-e1e2-2入^2e1e2-入e2^2
=-2入-1/2-2入^2*1/2-入
=-入^2-3入-1/2
=-(入+3/2)^2+7/4
因为入>=0,故入=0时有最大值是:-1/2

e1*e2=1/2
a*b=-t^2-3t-1/2(用t表示Lambda)
然后转化为求函数的极大值。最大值为-1/2

.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值(2)若e1,e2是夹角为60°的.已知e1,e2是平面上的一组基底,若a=e1+入e2,b=-2入e1-e2.(1)若a与b共线,求入的值已求出=±二分之根 已知向量e1e2是平面上一组基底已知e1e2是平面上一组基底,若m=e1+ae2,n=-2ae1-e2,若m,n共线,求a注e1,e2,m,n 都是向量! 已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1和e1+e2 B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1D.e1-e2和e1+e2为什么选C? 已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1-e2和e1+e2B.3e1-2e2和4e1-6e2C.e1-2e2和e1-2e2D.e2和e1+e2希望有正确的答案详细的原因解释与过程 若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是A、e1-e2,e2-e1B、2e1-e2,e1-1/2e2C、2e2-3e1,6e1-4e2D、e1+e2,e1-e2 设e1,e2是平面的一组基底,且a=e1+2e2,b=-e1+e2.则e1+e2= 已知向量e1,e2是平面a内所有向量的一组基底,(如下)且a=e1+e2,b=3e1-2e2,c=2e1+3e2,若c=λa+μb,(λ,μ∈R),试求λ,μ的值.我做了 可能思路不对 跟答案上结果不一样.思路明确些 已知e1,e2为平面内一组基底,向量AB=3(e1+e2),向量CB=e2-e1,向量CD=2e1+e2则四点A B C D中共线的是? 已知e1.e2是平面上的一组基底.拖a=e1+入e2,b=2入e1-e21)求a与b共线.求入得值2)若e1.e2是夹角为60°的单位向量.当入大于等于0时.求a*b的最大值 已知e1和e2是一组平面向量的基底,若ke1+e2与12e1+te2共线,求满足条件的所有正整数k,t的值 设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ).A.e1+e2和e1-e2 B.3e1-2e2和4e2-6e1 C.e1+2e2和e2+2e1 D.e2和e1+e2 已知e1与e2不共线,a=e1+2e2,b=2e1+λe2,要使a,b能作为平面内所有向量的一组基底,则实数,则实数λ的取值范围是? 已知向量e1,e2是平面内的一组基底(1)若AB=e1+e2,BC=2e1+8e2,CA=te1-t^2e2,且A,B,C三点不共线,求实数k的值(2)试确定实数k的值,使ke1-e2与e1-ke2共线且方向相反 已知e1,e2是平面向量的一组基底,且a=e1+e2,b=3e1-2e1,c=2e1+3e2若C=入A+ub(其中入,U属于R)试求入和U 已知e1,e2不共线,a=e1+2e2,b=2e1+se2,要使a,b能作为平面内所有向量的一组基底,则实数S的取值范围是() 若e1,e2是表示平面内所有向量的一组基底则下面各组向量中不能作为基底的是(1)e1-e2和1/2e1+1/2e2 (2)1/2e1-1/3e2和3e1-2e2 (3)e1+1/3e2和3e1+e2 平面向量的正交分解已知e1,e2是平面内的一组基底,实数x,y满足(2x-3y)e1+(5y-3x)e2=5e1+6e2求x-y的值? 已知e1e2是不共线向量,a=e1+2e2,b=2e1+ae2要使{a,b}能作为平面内所有向量的一组基底,则实数a的取值范围是e1,e2不共线,则a=e1+2e2,b=2e1+se2 均为非零向量 要使a,b能作为平面内所有向量的一组基底 b