计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:32:17
计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2
x){nuӟ||m:Ovt?[

计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2
计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2

计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2
原式=∫dθ∫rdr∫z³dz (作柱面坐标变换)
=(2π)(1/4)∫[(√(1-r²))^4-(r-1)^4]rdr
=(π/2)∫(4r^4-8r³+4r²)dr
=(π/2)[(4/5)r^5-2r^4+(4/3)r³]│
=(π/2)(4/5-2+4/3)
=(π/2)(2/15)
=π/15.

计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2 计算三重积分∫∫∫xyyzzzdv,积分区域是长方体:0 求三重积分∫∫∫zdxdydz,其中积分区域为z=x^2+y^2,z=1,z=2所围区域 三重积分柱坐标为什么有时计算三重积分时必须用柱坐标才能得到正确结果?直接用xyz的范围算不可以么例如Ω为x^2+y^2+z^2≤a^2所围成的区域,求∫∫∫z dv.此时就必须用球坐标来积分 计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域 计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域 计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域 三重积分可不可以就等于 被积函数 乘以积分区域所包括的体积三重积分 能这么想么?计算时候 可以这样算么,比如 ∫∫∫f(x,y,z)dxdydz 积分区域是体积为V 的区域,然后原式= ∫∫∫f(x,y,z)dV= f(x, 化三重积分∫∫∫f(x,y,z)dv为三次积分,其中积分区域Ω为曲面Z=x^2+y^2,Z=2-x^2所围成的闭区域这题很难吗? 关于可视化计算的一道题数值积分中对梯形求积分,求数值积分∫sin(x)dx,积分区域为(0,pi) 三重积分投影区域如何求 计算∫∫∫(x^2+y^2)dxdydz, 积分区域由曲面z=2-x^2 和z=x^2+2y^2所围成的闭区域,在线等求过程,还有求大神告诉我这种积分区域是曲面围成的用什么方法求比较好,三重积分和三次积分有不同吗?是不 计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域 计算三重积分∫∫∫zdxdydz,其中Ω由z=根号下x^2+y^2与z=4围成的闭区域. 求解:三重积分∫∫∫z^2dV, 被积区域为x^2+y^2+z^2 计算三重积分∫∫∫(x/a+y/b+z/c)dV 积分域为三个坐标面和平面x/a+y/b+z/c=1(a,b,c>0)所围成的区域 计算∫∫∫Ωz dxdydz其中Ω是由锥面Z=h/(R·sqrt(x^2+y^2))与平面Z=h(R大于0,h大于0)所围成的闭区域∫∫∫Ω中Ω为三重积分的下标,Z=h/(R·sqrt(x^2+y^2))表示 h 除以下面的值.这值为R乘以(根号下 计算三重积分 ∫∫∫(x^2+y^2)zdv,其中Ω为曲面2z=x^2+y^2与z=2平面所围成的区域.