已知数列{an}中,a1=1,a2=0,对任意正整数n,m(n>m)满足 (an)^2-(am)^2=an-man+m,则a119

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 13:04:12
已知数列{an}中,a1=1,a2=0,对任意正整数n,m(n>m)满足 (an)^2-(am)^2=an-man+m,则a119
x){}KMczub^ku m ul tdg-.~6u PYNF] _l۬g ltssuvL44I*ҧ v6v%M~ټYDŽ竻uڟ}lŋul&>f5(1l6 "@WaWaVbd Qj-*WDCŞM_bb=<;P"C

已知数列{an}中,a1=1,a2=0,对任意正整数n,m(n>m)满足 (an)^2-(am)^2=an-man+m,则a119
已知数列{an}中,a1=1,a2=0,对任意正整数n,m(n>m)满足 (an)^2-(am)^2=an-man+m,则a119

已知数列{an}中,a1=1,a2=0,对任意正整数n,m(n>m)满足 (an)^2-(am)^2=an-man+m,则a119
(an)^2-(am)^2=an-man+m对任意正整数n,m(n>m)都成立,
不妨设n=119,m=1或2
(a119)^2-(a1)^2=a119-a119+1=1
(a119)^2-(a2)^2=a119-2a119+2=-a119+2
(a119)^2=2
(a119)^2+a119=2
无解.