例如一边是dv一边是dt,为了消去dv和dt可以用积分,为什么都是用定积分,不能用不定积分吗,也可以消去啊?虽说可能有范围,但是我觉得这个等式并没有什么物理意义,范围也没什么用?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 05:27:15
例如一边是dv一边是dt,为了消去dv和dt可以用积分,为什么都是用定积分,不能用不定积分吗,也可以消去啊?虽说可能有范围,但是我觉得这个等式并没有什么物理意义,范围也没什么用?
xYnG~.X$,sY`%1X1xFA˔eI$-J"gH]鞙_y9lRt=GUu_ $FQ1/ NZV{ Ւ/۫%vG\UOת}ŧj))iSh8VN N~ b_1N 9k>MyYX.RIcvW[t sODCSmpŨnz|Jz[y3EdKb?ߔw:_ԆS$!Oȝ=;AS Gꡧ@c ) LQA*ImyuFglݤݓ{ e{.kwʛ&'ϑ}]o-8NLG \t^A^p@H{-V Q(` [p*z. u k?.(*V|ņkz .^{eXi]^< ML;2#NIT:CE\Ͻ%ۋ7|no&ԟ,M$\t~d Jq}Vl 0bCat.QC "Y E +o ao)H&YUͻhrN6n5煆U"#\%Qi|KwU0i Rqz^} zm1rỾfN!<@qш`vBvT&)Ffp?LDq'bjhX͈N0&3{m$bu_d:n=$oCVdȪL?n9`,ܻy?$.=.E\b KO"#F'r~M ' Ux331BcKbg?./||Kv3AL2"Sg%|21 IӠMzZf5J2ɔZ|Jq("d`/z"·{ЗH5A2`_")}!Z'.8HC œJ8) N",U4m %D1(P E'" JNrvsDFڼv4a)QXLDyV.^pwKj7Ӵʨ^d!1E)d7a6 PolCpT+rkur6%R] F%N8o_H],g.@rd[e7d ~>5q2N#(mAOฝS#6hPPRP*r(6F? 13/iT!V5^ּblqW@@փΕ.j2+T!޺>>1S-]Zi솪ᾼˈbB(@A:`ǣbV_zb??[?ri-?RwY|Ж.L.c3@v~' gSEPp6:mqQc65} of 5J^VG4rJ%ͰZ!b>qq;XϒgC"<&$0u rzB m? Dؓ*ГYδ1`Sdd/u3d\)lO/z^ǚ(^@27^sdu|+Cۭ)K8]qΒFt^LܷxS\[LZp-f F8JzܣXB~5u v(5Kp&=uRrԊqG\/d0qܚ׶DQ`{@C IVܓc\t8VM76ZO-^o^դ =bՍ$.Φ]Ȏk,㌤S5yvnfZ=#g\p"bh4*_15Էr\R}p`t߸̊HtE)F"u&w.VBK=ZyU~r&zEV AUKсVyqԳCSy>UXK TOGbRT W lSVƦkVexOy&`LD $ /p&13Dc,2qѫFVj? o&m|>6%Vp4W'e?06@Z觭ރqXH7~RQMR.N"yTI${+h!;hHYc$|scpXm}%YO\YP\0JFz=D4kFk44jH՝S'ȁma1v DrTxɴYW J^0hsf@ޮR-?;`c? ݦ(щ˃uMpjbJV֪;GC.j[)`EGOT CY(mQhH{|Kls;?<_y틿Ob?.}50hGe;fiWNir>鱋ݰR=pۯ_wnE*u2E â\䩈@;AC?~}rŸ`Myj6b;0'iT(bE{H e b?ZX_@A2:/yU-Ĭ k"ąyX I %>!̞#E獾蛐2Ft*IeAn$ӠZ~iauJH+ú_o@Nխ11T9v?hmM (]]RA,cT"j@1"iF|e4͜Sl *[FMU$Bc3d/2tT<"W0l>5->(CU69CbhQJx|iwkMHtY6f

例如一边是dv一边是dt,为了消去dv和dt可以用积分,为什么都是用定积分,不能用不定积分吗,也可以消去啊?虽说可能有范围,但是我觉得这个等式并没有什么物理意义,范围也没什么用?
例如一边是dv一边是dt,为了消去dv和dt可以用积分,为什么都是用定积分,不能用不定积分吗,也可以消去啊?虽说可能有范围,但是我觉得这个等式并没有什么物理意义,范围也没什么用?

例如一边是dv一边是dt,为了消去dv和dt可以用积分,为什么都是用定积分,不能用不定积分吗,也可以消去啊?虽说可能有范围,但是我觉得这个等式并没有什么物理意义,范围也没什么用?
问得好!

这是一个常见的问题:
1、一般的数学教师的教法是:
(1)、两边先不定积分,得到一个含有积分常数的解;
(2)、然后根据初始条件,解出积分常数;
(3)、将积分常数,代入含有积分常数的解中,得到最后的结果.
这种方法在解常微分方程时,屡屡如此.
2、一般的物理教师、天文、地质、气象、水文、工程、、、的教师的解法是:
(1)、两边同时定积分,一步到位,得到最后结果.

说明:
第一、两种解法,也就是不定积分、定积分的解法,没有任何本质差别;
第二、工程中、自然科学中的具体问题,都存在一个对应问题,也就是定解条件.
例如,初始时刻 t₁,对应的速度是v₁;末时刻 t,对应的是速度 v,
两边同时积分,v 从 v₁积分到 v,t从 t₁积分积到 t.
第三、数学教师是为了教数学而教数学,用不定积分他们不觉得是浪费时间;
搞科学和工程应用的,为解决实际问题而用数学,用不定积分纯属浪费时间.
第四、如果写论文时,用不定积分,是浪费篇幅,是下里巴人的写法,专业学报是
不可能浪费篇幅给你用不定积分的方法的,全用定积分,一步到位.

最常见的例子,可以在大学物理,也就是普通物理,定积分的方法,贯彻始终.
普通物理中、理论物理中,如果用不定积分,那是无能的教师才会采取的方法.

用定积分,才能体现具体的物理意义,和物理过程;
用不定积分,不能反映物理过程,更谈不上准确的物理意义了.

积分的有两种真正的物理意义,每种都有两个含义个:
第一种:一是对状态量的求和,如体积、质量、电量、能量等等;
二是对过程量的累积,如做功、焓变、熵变、电势差等等.
第二种:一是对广延量的求和,如质量、电量、能量、转动惯量等等;
二是对强度量的累积,如电场强度、磁感应强度、温度、压强等等.
(这最后强度累积的方法,英文是superposition,汉译是叠加原理)

【说明】:一般的数学教师,并不能认识到积分的这两种区别,原因是:
1、他们真正懂科学、懂工程的人是极少数中的极少数,一般的高中数学教师,
几乎全然不通,根本无法理解,积分在各个科学领域中、工程领域中具体
运用,更不可对科学运用、工程运用做出整体的概括性的分析.在根本上,
他们就是兴趣缺缺.
2、即使是大学数学教授,没有字典,能将英文运用自如,能看、能写、能讲、
能用英文评论数学、科学的人,凤毛麟角.他们的绝大部分脱离了字典就
是瞎子,有了字典仍是哑巴,比比皆是.中学教师,一般而言,数学教师
几乎全是英文高瘫,尤其是县城以下的中学,一所学校平均能有一个数学
教师能应用自如地运用英文,都是天方夜谭.
所以,上面的两种分类,一般教师,教一辈子,注定不会涉及,因为这些还涉及
到methodology,philosophy,logics、、、、.
越是高级的学报,越是专业的教师,越是高深的课程,越是采用定积分的方法.
原因就是:讲专业才是重点.没有时间,也没有必要把时间浪费在花拳绣腿上.
尤其是二维、三维的问题,都必须用定积分解答.

养成习惯就好,省时间,概念清楚,解答精炼,专业性强!

数学老师用不定积分的方法,只能当成入门时的玩艺,以后用定积分,
才能显示你有解决实际问题的能力.以后的二重积分、三重积分、
空间曲面积分、空间曲线积分、、、、都必须用定积分.

【结论】:
1、用不定积分,得到的只是笼统的结论,还必须得出具体的积分常数,这个过程
不如一步到位,直接定积分.其实,确定积分常数的过程,就是定积分的思想,
就是定积分的方法,具体是表现在积分时两边的下限上,待定积分常数用的就
是积分的下限.这方面,楼主要仔仔细细想想,初学者,一时片刻是难悟透的.

2、物理意义的体现有两方面:
第一:积分之前的等式,这个等式如果是数学恒等式,那这个积分只具有数学
意义,而不具有物理意义,其实也只是数学游戏而已,或者说是数学技
巧而已.积分来积分去,只是形式的积分,只是技巧的提高.

只有两边不是恒等式时,才是本质,这类的积分一定涉及具体的物理原
理、工程原理.有时为了简化积分,可以对两侧做恒等变换,然后积分,
数学教师的那种恒等式的积分,只有在这种情况下,才能有价值.

所以,物理意义的体现,第一体现在积分前的方程上,而不是等式上.

第二:不定积分后的常数确定,就是定积分前的下限确定,本质上是统一问题.
定积分的上下限的确定,本身就是物理意义的第二种体现,也就是,某
一初始时刻对应的是什么物理量,终了时刻对应的是什么物理量.这种
对应可能是时间上的对应,也可能是边界上的对应,合起来这类问题就是
常微分方程、偏微分方程的【定解问题】.教常微分方程、偏微分方程的
教授,基本上全是数学系毕业的,他们的共同缺陷是不能精通天文、地质、
气象、水文、海洋、机械、电子、电气、理论物理、理论化学等等等学科,
确定边界条件是他们的集体致命弱点,能确定的只是极少数极少的特例.

在初等数学中,会解方程就万事大吉.可是到了高等数学中,解微分方程,
特别是偏微分方程,必须根据定解条件,才能解答.对于初学高等数学者,
对于初等数学学习者,这是不可思议的事情.由于我们的教学培养出一大
批喜欢雄辩滔滔的学生,他们对新的理论出现时,不是冷静思考,而是条
件反射式的喜欢反驳,这种极不理性的反驳情绪不是个别学生,它不知葬
送了多少学生的前途.可是,我们的教师们本身就做了很多这样的示范与
鼓励.以至于,我们在现代数学、现代科学、现代工程学中,在国际上,
我们都是三流以外的脚色,毫无发言权,所有的理论都是舶来品,我们无
知无觉,我们乐此不疲.

所以,物理意义的体现,第二是体现在定解条件上.而定解条件的体现就
在于定积分的一气呵成上.

附:定解条件的英文是initial-value problem,楼主可以网上搜索.
initial-value problem,表面意译是“初值问题”,这个翻译不算错.
引申翻译就是由初值问题解决常微分方程、偏微分方程的最后的
解,也就是确定最后的解的问题,所以,初值问题的本身含义也
就是定解条件.

肯定要用定积分啊,又不是简单地数学推导,因为它是包含物理意义的,例如要对杆长0到L积分,
如果不标明上下限,那么杆长不成无限长了,它是有实际意义的。

可以用不定积分 ,唯一的区别就是要考虑积分的上下限,同时要考虑初始值。这样的话才算比较真实的描述了 速度的变化规律不考虑会怎么样,给个具体的解释吧,好理解不考虑的话,就有一些积分常数,常数不确定的话,可能你就不能对这个物理量的变化规律准确把握 ,譬如 你知道速度什么时候为0,什么时候开始反向...

全部展开

可以用不定积分 ,唯一的区别就是要考虑积分的上下限,同时要考虑初始值。这样的话才算比较真实的描述了 速度的变化规律

收起

例如一边是dv一边是dt,为了消去dv和dt可以用积分,为什么都是用定积分,不能用不定积分吗,也可以消去啊?虽说可能有范围,但是我觉得这个等式并没有什么物理意义,范围也没什么用? 什么是dv和dt 由dv/dt=dv/dx dx/dt和—kv=m dv/dt是怎么得到dx=-m/k dv/dt是电容的什么参数? dv/dt滤波器中的dv和dt分别是什么意思? 什么形式的运动满足dv/dt等于0,dv/dt不等于0.必须dv/dt等于0且dv/dt不等于0。即两个条件同时成立。前一个v是标量,后一个v是矢量。 微分 dv/dt 为什么 dv/dt=v*dv/dy dv/dt=?r是位移,t是时间 dv/dt=dr/dt 上式是怎么从左边化成右边的? 大学物理困惑算切向加速度时a(t)=dv/dt这是不是错了,dv/dt算出来的是总的加速度啊?还包括法向加速度的啊 关于质点做曲线运动时的一个问题 d|v|/dt和|dv/dt| (v都是黑体)两个的意思是一样的吗? dv(标量)/dt dv(矢量)/dt 的区别 数学中 dv/dt 是速度的变化率.也可叫加速度.但是d是什么意思啊? 由adt=dv,两边积分为什么能一边对v积分,一边对t积分? 加速度a=dx/dt ,但a=dv/dt ,v=dx/dt ,a=d·(dx/dt)/dt ,为什么a就等于dx/dt,而不等于dx/dt a=dx/dt ,推导是a=dv/dt ,v=dx/dt ,a=d·(dx/dt)/dt ,为什么它就等于dx/dt,而不等于dx/dt 理论力学中动能定理的证明问题,和求导有关(大学)我在书上看到一个动能定理的证明,其中有一个步骤有疑问.证明是这样的dL=F x dP=ma x dp=m(dv/dt) x vdt=m x (dv/dt x dv)dt=m x (d(v^2/2)/dt)dt.后面就不写 为什么角动量定理推导中dr/dv=v为什么dr/dv=v,和速度v是一样的? 加速度的定义到底是 dv/dt 还是F/m (v和F都是指矢量,在此不便书写)