广义相对论的具体内容是什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:26:16
广义相对论的具体内容是什么?
x[]o#Wr+z lM{F@^p=lj4I_>IF_3#H#MR6aow!Tn6IM$cFd߮[nթSu>/MoAkڽ;M>5[mz_}_~㭑TA;&]ڞ6c-MʔSH& yxpጃuR *ː֒K!|^Qx[1&\)1=Ԯ e1kA/] NW /<0޺7vwbܶLnYXAfv:yY1̾ae]F =9tl9QpD9p) L 8cQGu8jKM]W+ts FwQaX\xJѭ_|QۋoUnլ{3| rVK[m3+b*_gǦP Zij~&/P5O5.ʯYu*5uY՟X P/GiaUl5DP:R=)21| ,0hX'g1-H`K=0YoV` sx v~.?v[ez5&p46ERg?n)KCsϿ\=Ei/bVIWUtJu:34ƁG@qbK_m}. ) cU`ѴQL_,+[0p<:@xṮ?SWEPv008^< GuoX - [>|KP G[9|| :W@qMH1 C#lxlnn.1u7Gi^F֔;ֿ_#Pknbt MضeSLKDM+kZaž ~k8Z䖒l 65~^SfWB$q^љ:,vK '1e,}H/LNLp̵߈6kźelWZZQiά5l)¸9HJSRpqI').to]N}ڴYEY&H$XENT]m.]j4Q`H ngA:lf&VX2\f#;Z1 N1HUed>*Δ^| YVɈ[nhiua;`D@>rS }ZlNBE! 6QtU~EJ8|\S1WӘJl>XoQv =A ΫZ3% m@ka^Aӵ]0^B2k{lh]܁-K,3K>MeO5R˓5I+x/: F=t3UeS:\4^7-( G#O__xo7~o[xYw7~w/'+oz2 40v bKq5wX`W^-a QjkYgEmbKQ b5mՃR ?x9VΫϴOF5RJ/Y\" m^_ ͣp'̤U?KmOaP lt!QEfO΂ c&޻IJdWoI'MIwKhAeʛĉ.ɰZ oӱ)stſ2qC%Gyxa[ld:X>?w~58x䏏G8H1a$S OkkP~a\$tz?zSjW h> -J?HS&s NSnxV#^9Ė0Hʈ+zRM,6Q 0REƿI G rLy3K60֮e6b^rPU6Pֵ͑4_5 1[ς‹[cҚ%h7_} ᄎ`~Dž/xpw齴^`Eil"f Jb Ma)A:z+1𮎐aѿR.y H^ kD><4*[-D.hMq(a+ v8?{|CmuR )qנBBhF5f\6B7jۂ0랕:=-K=v^ZngfDSRKl{j/;jV[Mdry%3ňNL-ֱc2{#=M%jHH :i,"Z,S ȹ3@G7%W Wu,d/ZPk!gk,lI5_[xX]Y#/2ױo.1^w uRVHbƾmddYfW-:Aeݫ+sJd)=OVa,)N:\)CHXݒnՌ)dΈo ˀlK:>c*kk,U$^]̭&K^i7 /j)BeX*k` 9& Ԕz$d6i\X_:{ a8<A(rLJ6#ͨP9a/XcD؈PPl fdԤ,h\a쪓n36bˢֺ,Qɤ\>ꐧ$nXPƥUqy& &7'K^!sh+6 `c!um%l\e=Rx-+#\*fmmݐ4+fbq,_P)խ%""mؘƶ~`粛7fVٛ6/o`bRlg [0k&w祒=Ϧ4̮!tJ) 8[E/N,<'3%'+Ny0CS[ts*Ȋyp=R0-Ss#uNKl[l'OQ2rm4ʭ/D<0]w&/YWx[f@軟>zƏo//!F?Oy]^?ǿox{Oޗ.Ck!9 M||NISނ,]ڞ~X!0ICwkLὬk<)xxے96urDhZ|ɛe>at0;K1֓kuzC݃X]fec2=J,?pF2$7r΍7?ѓyi^Oj?|/m{

广义相对论的具体内容是什么?
广义相对论的具体内容是什么?

广义相对论的具体内容是什么?
广义相对论是阿尔伯特·爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平.广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立.在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相联系,其联系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组).从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应.广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论.不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论.爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出.有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因.光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像.广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台(LIGO)这样的引力波观测计划的目标.此外,广义相对论还是现代宇宙学的膨胀宇宙模型的理论基础.
编辑本段相关简介
相对论是现代物理学的理论基础之一.论述物质运动与空间时间关系的理论.20世纪初由爱因斯坦创立并和其他物理学家一起发展和完善,狭义相对论于1905年创立,广义相对论于1916年完成.19世纪末由于牛顿力学和(苏格兰数学家)麦克斯韦(1831~1879年)电磁理论趋于完善,一些物理学家认为“物理学的发展实际上已经结束”,但当人们运用伽利略变换解释光的传播等问题时, 发现一系列尖锐矛盾,对经典时空观产生疑问.爱因斯坦对这些问题,提出物理学中新的时空观,建立了可与光速相比拟的高速运动物体的规律,创立相对论. 狭义相对论提出两条基本原理.(1)光速不变原理. 即在任何惯性系中, 真空中光速c都相同, 与光源及观察者的运动状况无关.(2)狭义相对性原理是物理学的基本定律乃至自然规律,对所有惯性参考系来说都相同. 广义相对论
爱因斯坦的第二种相对性理论(1916年).该理论认为引力是由空间——时间几何(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量. 广义相对论:爱因斯坦的基于光速对所有的观察者(而不管他们如何运动的)必须是相同的观念的理论.它将引力按照四维空间—时间的曲率来解释. 狭义相对论和万有引力定律,都只是广义相对论在特殊情况之下的特例.狭义相对论是在没有重力时的情况;而万有引力定律则是在距离近、引力小和速度慢时的情况. 600千米的距离观看十倍太阳质量黑洞模拟图
在600千米的距离上观看十倍太阳质量的黑洞(模拟图),背景为银河系
编辑本段诞生背景
爱因斯坦在1905年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成.1912年,爱因斯坦发表了另外一篇论文,探讨如何将重力场用几何的语言来描述.至此,广义相对论的运动学出现了.到了1915年,爱因斯坦场方程式被发表了出来,整个广义相对论的动力学才终于完成. 1915年后,广义相对论的发展多集中在解开场方程式上,解答的物理解释以及寻求可能的实验与观测也占了很大的一部份.但因为场方程式是一个非线性偏微分方程,很难得出解来,所以在电脑开始应用在科学上之前,也只有少数的解被解出来而已.其中最著名的有三个史瓦西解(the Schwarzschild solution (1916)), the Reissner-Nordström solution and the Kerr solution. 在广义相对论的观测上,也有著许多的进展.水星的岁差是第一个证明广义相对论是正确的证据,这是在相对论出现之前就已经量测到的现象,直到广义相对论被爱因斯坦发现之后,才得到了理论的说明.第二个实验则是1919年爱丁顿在非洲趁日蚀的时候量测星光因太阳的重力场所产生的偏折,和广义相对论所预测的一模一样.这时,广义相对论的理论已被大众和大多的物理学家广泛地接受了.之后,更有许多的实验去测试广义相对论的理论,并且证实了广义相对论的正确. 另外,宇宙的膨胀也创造出了广义相对论的另一场高潮.从19 爱因斯坦解释广义相对论的手稿扉页
22年开始,研究者们就发现场方程式所得出的解答会是一个膨胀中的宇宙,而爱因斯坦在那时自然也不相信宇宙会来涨缩,所以他便在场方程式中加入了一个宇宙常数来使场方程式可以解出一个稳定宇宙的解出来.但是这个解有两个问题.在理论上,一个稳定宇宙的解在数学上不是稳定.另外在观测上,1929年,哈勃发现了宇宙其实是在膨胀的,这个实验结果使得爱因斯坦放弃了宇宙常数,并宣称这是我一生最大的错误(the biggest blunder in my career). 但根据最近的一形超新星的观察,宇宙膨胀正在加速.所以宇宙常数似乎有败部复活的可能性,宇宙中存在的暗能量可能就必须用宇宙常数来解释.
编辑本段基本假设
简单地说,广义相对论的两个基本原理是:一,等效原理:引力与惯性力等效;二,广义相对性原理: 等效原理
所有的物理定律在任何参考系中都取相同的形式.
等效原理
等效原理:分为弱等效原理和强等效原理,弱等效原理认为引力质量和惯性质量是等同的.强等效原理认为,两个空间分别受到引力和与之等大的惯性力的作用,在这两个空间中从事一切实验,都将得出同样的物理规律. 现在有不少学者在从事等效原理的论证研究,但是至少目前能够做到的精度来看,未曾从实验上证明等效原理是破缺的.
广义相对性原理
广义相对性原理:物理定律的形式在一切参考系都是不变的. 普通物理学(大学课本)中是这样描述这两个原理的: 等效原理:在处于均匀的恒定引力场影响下的惯性系,所发生的一切物理现象,可以和一个不受引力场影响的,但以恒定加速度运动的非惯性系内的物理现象完全相同. 广义相对论的相对性原理:所有非惯性系和有引力场存在的惯性系对于描述物理现象都是等价的.
编辑本段基本概念
广义相对论是基于狭义相对论的.如果后者被证明是错误的,整个理论的大厦都将垮塌.
质量的两种不同表述
为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的. 首先,让我们思考一下质量在日常生活中代表什么.“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上.我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实.这种质量被称作“ 小球落到正在加速的地板上和落到地球上
引力质量”.我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动. 现在,试着在一个平面上推你的汽车.你不能否认你的汽车强烈地反抗着你要给它的加速度.这是因为你的汽车有一个非常大的质量.移动轻的物体要比移动重的物体轻松.质量也可以用另一种方式定义:“它反抗加速度”.这种质量被称作“惯性质量”. 因此我们得出这个结论:我们可以用两种方法度量质量.要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律). 人们做了许多实验以测量同一物体的惯性质量和引力质量.所有的实验结果都得出同一结论:惯性质量等于引力质量. 牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的.但他认为这一结果是一种简单的巧合.与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道. 日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”.然而重的物体受到的地球引力比轻的大.那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强.结论是,引力场中物体的加速度与其质量无关.伽利略是第一个注意到此现象的人.重要的是你应该明白,引力场中所有的物体“以同一加速度下落”是(经典力学中)惯性质量和引力质量等同的结果. 现在我们关注一下“下落”这个表述.物体“下落”是由于地球的引力质量产生了地球的引力场.两个物体在所有相同的引力场中的加速度相同.不论是月亮的还是太阳的, 光锥
它们以相同的比率被加速.这就是说它们的速度在每秒钟内的增量相同.(加速度是速度每秒的增加值)
引力质量和惯性质量的等同性
爱因斯坦一直在寻找“引力质量与惯性质量相等”的解释.为了这个目标,他作出了被称作“等同原理”的第三假设.它说明:如果一个惯性系相对于一个伽利略系被均匀地加速,那么我们就可以通过引入相对于它的一个均匀引力场而认为它(该惯性系)是静止的. 让我们来考查一个惯性系K’,它有一个相对于伽利略系的均匀加速运动.在K 和K’周围有许多物体.此物体相对于K是静止的.因此这些物体相对于K’有一个相同的加速运动.这个加速度对所有的物体都是相同的,并且与K’相对于K的加速度方向相反.我们说过,在一个引力场中所有物体的加速度的大小都是相同的,因此其效果等同于K’是静止的并且存在一个均匀的引力场. 因此如果我们确立等同原理,物体的两种质量相等只是它的一个简单推论. 这就是为什么(质量)等同是支持等同原理的一个重要论据. 通过假定K’静止且引力场存在,我们将K’理解为一个伽利略系,(这样我们就可以)在其中研究力学规律.由此爱因斯坦确立了他的第四个原理.
编辑本段主要内容
爱因斯坦提出“等效原理”,即引力和惯性力是等效的.这一原理建立在引力质量与惯性质量的等价性上.根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的.物体的运动方程即该参考系中的测地线方程.测地线方程与物体自身固有性质无关,只取决于时空局域几何性质.而引力正是时空局域几何性质的表现.物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应.正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走. 引力是时空局域几何性质的表现.虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力,这方面的努力在罗巴切夫斯基、Bolyai、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的.非欧几何的一般数学理论是由高斯的学生黎曼发展出来的.所以也称为黎曼几何或曲面几何,在爱因斯坦发展出广义相对论之前,人们都认为非欧几何是无法应用到真实世界 光波从一个大质量物体表面出射频率发生红移
中来的. 在广义相对论中,引力的作用被“几何化”——即是说:狭义相对论的闵氏空间背景加上万有引力的物理图景在广义相对论中变成了黎曼空间背景下不受力(假设没有电磁等相互作用)的自由运动的物理图景,其动力学方程与自身质量无关而成为测地线方程: 而万有引力定律也代之以爱因斯坦场方程: R_uv-1/2*R*g_uv=κ*T_uv (Rμν-(1/2)gμνR=8GπTμν/(c*c*c*c) -gμν) 其中 G 为牛顿万有引力常数 该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程.它以复杂而美妙著称,但并不完美,计算时只能得到近似解.最终人们得到了真正球面对称的准确解——史瓦兹解. 加入宇宙学常数后的场方程为: R_uv-1/2*R*g_uv+∧*g_uv=κ*T_uv
编辑本段宇宙现象与科研应用