线性代数,矩阵的初等变换问题,急已知A~B(行变换),即A经过一系列初等行变换变为B则有可逆矩阵P,使得PA=B,那么如何去求这个可逆矩阵P?书本是这么说的:由于PA=B↔PA=B,PE=P↔P(A,E)=(B,P)U

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:51:27
线性代数,矩阵的初等变换问题,急已知A~B(行变换),即A经过一系列初等行变换变为B则有可逆矩阵P,使得PA=B,那么如何去求这个可逆矩阵P?书本是这么说的:由于PA=B↔PA=B,PE=P↔P(A,E)=(B,P)U
xTJA~BQ&r? Elj~lM̪5hF&5"sf7WB̬k B$;o;Llq qC^<'кW,4-=ΆF :uorOȶus YRQ 27jkh$U0o7%puM/39_,-

线性代数,矩阵的初等变换问题,急已知A~B(行变换),即A经过一系列初等行变换变为B则有可逆矩阵P,使得PA=B,那么如何去求这个可逆矩阵P?书本是这么说的:由于PA=B↔PA=B,PE=P↔P(A,E)=(B,P)U
线性代数,矩阵的初等变换问题,急
已知A~B(行变换),即A经过一系列初等行变换变为B则有可逆矩阵P,使得PA=B,那么如何去求这个可逆矩阵P?书本是这么说的:由于PA=B↔PA=B,PE=P↔P(A,E)=(B,P)↔(A,E)~(B,P),因此,如果对(A,E)做初等行变换,那么,当A变为B时候,E就变为P,这样就得到了所求的可逆矩阵P.我想说的是,书中说的可逆矩阵P是说P是A的可逆矩阵,还是说P不是A的逆矩阵,但是P是可逆的啊,还有PA=B,PE=P↔P(A,E)=(B,P)↔(A,E)~(B,P),这里,P(A,我知道(A,E)是增广矩阵,但是,P(A,E)是不是指的是两个矩阵相乘啊,为什么由PA=B,PE=P能得到P(A,E)=(B,P),还有最后P(A,E)=(B,P)↔(A,E)~(B,P),这个是如何转换的啊,特别是最后一句,“因此,如果对(A,E)做初等行变换,那么,当A变为B时候,E就变为P,这样就得到了所求的可逆矩阵P”这句话应该怎么理解啊,万分感激,我的分昨天用完了,但是,我下次会给你补上,万分感激啊

线性代数,矩阵的初等变换问题,急已知A~B(行变换),即A经过一系列初等行变换变为B则有可逆矩阵P,使得PA=B,那么如何去求这个可逆矩阵P?书本是这么说的:由于PA=B↔PA=B,PE=P↔P(A,E)=(B,P)U
对A实施一次初等行变换, 相当于左乘一个相应的初等矩阵
由于 A经行变换化为B, 则存在初等矩阵P1,P2,...,Pk
使得 P1P2...PkA = B
令P=P1P2...Pk, 则P可逆, 它是相应的初等矩阵的乘积, 不是A的逆矩阵
(A,E) 是分块矩阵, P(A,E) 是分块矩阵的乘法, P看作只有一个块分块矩阵
P(A,E) = (PA,PE) = (B,P)
亦即 P1P2...Pk(A,E) = (B,P)
这说明 对(A,E)作初等行变换, 当左子块化为B时, 右子块即所求的P

可逆矩阵是指这个矩阵自己有逆矩阵,P(A,E)表示P去乘以A和E并起来的矩阵
因为P(A,E) =(PA,PE) = (B,P)啊

线性代数,矩阵的初等变换 线性代数,矩阵的初等变换 线性代数 矩阵初等变换 线性代数 矩阵初等变换 线性代数 矩阵 初等变换 线性代数,矩阵的初等变换问题,急已知A~B(行变换),即A经过一系列初等行变换变为B则有可逆矩阵P,使得PA=B,那么如何去求这个可逆矩阵P?书本是这么说的:由于PA=B↔PA=B,PE=P↔P(A,E)=(B,P)U 矩阵初等变换的问题 矩阵初等变换问题 【线性代数】关于矩阵的初等行变换问题因为这两种方法变换后的矩阵不一样,所以有疑问. 线性代数,矩阵的变换问题, 线性代数矩阵变换问题矩阵的非初等变换都包括什么?矩阵的初等变换可以用来解线性方程组,那么非初等变换有什么作用?分数少,请谅解 高数-线性代数,问一道矩阵的初等变换题 关于线性代数的问题:用初等矩阵P左乘矩阵A,所得PA就是对矩阵A做了一次与P同样的行初等变换,这句话怎么理解啊? 线性代数初等变换问题化成行阶梯型矩阵 只能用初等行变换吗?为什么不能用列变换? 关于数学上的初等变换与初等矩阵问题1.初等变换对应初等矩阵----这话怎么理解?是不是意味着A矩阵的每一次初等变换,对应着相应的初等矩阵?2.由初等变换可逆,可知初等矩阵可逆,且此初等 线性代数,矩阵变换问题 线性代数,逆矩阵,初等行变换 线性代数,矩阵初等变换问题同济版线代,第三章矩阵变换,里面强调一种方法:解矩阵方程AX=B:对矩阵(A,B)做初等行变换,变成(E,A的逆B),则得到X=A的逆B但是,我先求A的逆,然后再X=A的逆B不