以三角形ABC的边AB,AC为边向内作正方形ABFG,M是DF的中点,N是BC的中点,连接MN探究线段MN与BC 的关系,应该是垂直,但是不会证明以三角形ABC的边AB,AC为边向内作正方形ABFG和正方形ACDE,M是DF 的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 14:21:45
以三角形ABC的边AB,AC为边向内作正方形ABFG,M是DF的中点,N是BC的中点,连接MN探究线段MN与BC 的关系,应该是垂直,但是不会证明以三角形ABC的边AB,AC为边向内作正方形ABFG和正方形ACDE,M是DF 的中点
以三角形ABC的边AB,AC为边向内作正方形ABFG,M是DF的中点,N是BC的中点,连接MN
探究线段MN与BC 的关系,应该是垂直,但是不会证明
以三角形ABC的边AB,AC为边向内作正方形ABFG和正方形ACDE,M是DF 的中点……(接下面的题目,上面的题目不完整)
以三角形ABC的边AB,AC为边向内作正方形ABFG,M是DF的中点,N是BC的中点,连接MN探究线段MN与BC 的关系,应该是垂直,但是不会证明以三角形ABC的边AB,AC为边向内作正方形ABFG和正方形ACDE,M是DF 的中点
题中,图形没有说明清楚,如d点 ,向内作正方形不是向外作?再把原题看一看.
延长CM至H,使CM=MH,连接FH、BH、CM、BM,延长CD,与BF相较于I
∵MF=MD CM=HM ∠CMD=∠HMF
∴△CMD≌△HMF
HF=CD=AC
∠HFJ=180°-∠JHF-∠HJF
∠HJF=∠IJC ∠JHF=∠DCM
∠BIC=∠IJC+∠DCM
四边形ABIC中∠ABI=∠ACI=RT∠
∠BAC=360°-∠ABI-∠ACI-∠BIC=180°-∠BIC=180°-∠IJC-∠DCM=180°-∠JHF-∠HJF=∠HFB
∴△ABC≌△FBH
∠HBF=∠ABC
∠CBH=∠HBF+∠CBF=∠ABC+∠CBF=90°
BC⊥BH
N是BC中点,M是HC中点
MN‖BH
BC⊥MN
垂直