定义在R上的不恒为0的函数f(x)满足:对任意实数x1x2 都有f(x1x2)=x2f(x1)+x1f(x2)判断f(x)的奇偶性过程 谢谢
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:37:24
x͒N@_n-t=%"@L4!&!r,w!O]n43n({q6vw?J6le6|gD]% AwA1(KSUi-
定义在R上的函数f(X)满足任意 x,y属于R恒有f(xy)=f(X)+f(y),且f(X)不恒为0,求f(1)和f(-1)的值;判断f(X)的奇偶性;若 x>=0时f(X)为增函数,求满足不等式f(X+1)-f(2-x)
已知定义在实数R上的函数y=f(x)不恒为零,同时满足f(x+y)=f(x)f(y),且当x>0时,f(x)>1,那么当x
已知定义在实数集R上的函数f(x)不恒为零,同时满足f(x+y)=f(x)f(y),x>0时,f(x)>1那么x
已知定义在实数集R上的函数y=f(x)恒不为零,同时满足f(x+y)=f(x)*f(y),且当x>0时,f(x)>1,那么当x
已知函数f(x)是定义在R上的不恒为0的函数,且对任意的a,b属于R都满足f(ab)=af(b)+bf(a) (1)求f(0),f(1)值已知函数f(x)是定义在R上的不恒为0的函数,且对任意的a,b属于R都满足f(ab)=af(b)+bf(a) (1)求f(0),f(1)
定义在R上的函数f(x)满足对任意x,y属于R均有f(xy)=f(x)+f(y),且f(x)不恒为零,证明:1.f(x)的奇偶性2.若x大于等于0时为增函数,求满足不等式f(x+1)-f(2-x)小于等于0的x取值集合
已知定义在R上的函数f(x)满足当x>0时,f(x)
已知定义在R上的函数f(x)满足当x>0时,f(x)
已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)
定义在r上的函数满足f(-x)=-f(x)且f(x)为减函数 求不等式f(x)-f(x平方)小于0
定义在R上的函数f(x)满足f(x-2)=f(x+2)且f(x)不恒等于0,判断f(x)的奇偶性.
f(x)是定义在R上的不恒为0的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a).判断f(x)的奇偶性.
f(x)是定义在R上的不恒为0的函数,且对于任意的a,b属于R都满足f(ab)=af(b)+bf(a).判断f(x)的奇偶性.诸位帮帮忙,多谢了.
定义在R上的函数满足f(x)-f(x-5)=0,当-1
已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性如题
定义在R上的函数f(x)不恒为0.满足f(x+3)=-f(3-x),f(x+4)=-f(4-x)问f(x)的奇偶性和是周期函数么?
1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)且x>0时,0<f(x)<1,判断函数f(x)的单调性.2、定义在R上的不恒为0的函数f(x)满足:对任意x1、x2都有f(x1x2)=x
已知f(x)是定义在R上的不恒为0的函数对于任意的x y属于R有f(xy)=xf(y)+yf(x)1.求f(-1),f(1)的值2.判断函数的奇偶性3.若y=f(x)在[0,+无穷)上是增函数且满足f(x)+f(x-1/2)