已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性如题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 09:35:28
已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性如题
xPJ@,$?Efk҉R+E񅩂B6я)s'/8T*.9s9~kuӐ2x8;m輋q,)Yg]s6LjxA)\QDq9EH%!HWTtzCށT4au{o7csK]d]c`#ϥ?=ZUT)HKGql΀7NȂȲdvAC=Ye!*v.ן:%zF

已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性如题
已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性
如题

已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性如题
令y=-x≠0带入上式,
xf(-x)=-xf(x)
f(-x)=-f(x)
令y≠0,x=0带入上式
0f(y)=yf(0)
得到f(0)=0
即x∈R
f(-x)=-f(x)恒成立
所以f(x)为奇函数

令y=-x
则xf(-x)=-xf(x)
f(-x)=-f(x)所以f(x)为奇函数

已知定义在实数R上的函数y=f(x)不恒为零,同时满足f(x+y)=f(x)f(y),且当x>0时,f(x)>1,那么当x 函数奇偶性题,特急!已知函数f(x)是定义在R上的不恒为0的函数,且对于已知函数f(x)是定义在R上的不恒为0的函数,且对于R上任意的a,b,都有f(ab)=af(b)+bf(a).(1)、求f(0),f(1)的 已知定义在R上的函数f(x)不恒为0,且对任意x,y属于R,满足xf(y)=yf(x),则f(x)奇偶性如题 已知f(x)为定义在R上的可导函数,且f(x) 已知定义在实数集R上的函数y=f(x)恒不为零,同时满足f(x+y)=f(x)*f(y),且当x>0时,f(x)>1,那么当x 已知定义在r上的函数f(x)=x^2(ax-3),其中a属于r,且a不为0 (1)若x=1是函数f(x)的一个极值点,求函数fx已知定义在r上的函数f(x)=x^2(ax-3),其中a属于r,且a不为0 (1)若x=1是函数f(x)的一个极值点, 已知函数f(x)是定义在R上的以3为周期的奇函数,且当0 已知函数f(x)是定义在R上的不恒为0的函数,且对任意的a,b属于R都满足f(ab)=af(b)+bf(a) (1)求f(0),f(1)值已知函数f(x)是定义在R上的不恒为0的函数,且对任意的a,b属于R都满足f(ab)=af(b)+bf(a) (1)求f(0),f(1) 已知函数f(x)是定义在R上的不恒为0的偶函数,且对任意函数x都由xf(x+1)=(1+x)f(x).则f(3/2)等于多少? 1、已知f(x)是定义在R上的不恒为零的函数,且对任意a,b∈R,都满足f(ab)=af(b)+bf(a)1) 求f(0),f(1)的值2)判断函数f(x)的奇偶性2,已知f(x)是一个定义在(0,正无穷)上的函数,当x>1时,f(x)>0,且对于(0,正 已知函数f(x)是定义在实数集R上的不恒为0的偶函数,且对任意实数x都有xf(x+1)=(x+1)f(x).求f(x)的值 已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数X都有Xf(X+1)=(1+X)f(X)则f(2.5)的值 已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数X都有Xf(X+1)=(1+X)f(X)则f(2.5)的值 已知函数f(x)是定义在R上的不恒为零的函数,且对於任意的a,b属於R都满足f(ab)=af(b)+bf(a)(1)求f(0),f(1) (2)判断f(x)的奇偶数已知f(x)是定义在(0,正无穷)上的增函数,且 已知f(x)是定义在R上的不恒为0的函数,且对于任意的实数a、b,满足f(ab)=af(b)+bf(a).(1)判断函数f(x)在R上是否是单调函数为什么?(2)判断f(x)的奇偶性,并证明你的判断:(3) 已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y属于R,有f(xy)=xf(y)+yf(x),若y=f(x)在[0,+无穷大)上是增函数,切满足f(x)+f(x-0.5) 函数的奇偶性已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a、b∈R,都有f(ab)=af(b)+bf(a)(1)求f(0)、f(1)的值(2)判断函数f(x)的奇偶性,并加以证明 已知f(x)是定义在R上的不恒为0的函数对于任意的x y属于R有f(xy)=xf(y)+yf(x)1.求f(-1),f(1)的值2.判断函数的奇偶性3.若y=f(x)在[0,+无穷)上是增函数且满足f(x)+f(x-1/2)