题是这样的:证明:如果a为正整数,那么多项式a的三次方-a一定能被6整除.我提公因式分解,得a{a+1}{a-1},也就是三个连续的正整数相乘,我就是不明白为什么一定能被6整除吖下边还有一个变式联

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:42:01
xTn@"K HPJH$N@ IJ *"jr:kLIoU vg73offWuzlZ?|\cu>rgwۤ[Z|{&if mO[x[gW7ŬzJjB/1߳/ML>]O"-bW6=G]=GE^ D{PGhZM+=bMz`,w~:,BFUJ*/x,@@x%5n _WӉl&*"nUB@-7J <z*-xtTlrh[-:bmEzvWHLdѫL0ܴ8픆6&D}c[ MIȞ+0 dZɚ ;C,NaSqaVQXBt/~}:J*8/9[W~c_Y/[(t!s< _E- 'a閵2=`zs~`aEp%=dMVBQwCHp@'|$h{~ӒC$Fi%\hX$#M8lBXR,fP/u
题是这样的:证明:如果a为正整数,那么多项式a的三次方-a一定能被6整除.我提公因式分解,得a{a+1}{a-1},也就是三个连续的正整数相乘,我就是不明白为什么一定能被6整除吖我已经提过一个这样 题是这样的:证明:如果a为正整数,那么多项式a的三次方-a一定能被6整除.我提公因式分解,得a{a+1}{a-1},也就是三个连续的正整数相乘,我就是不明白为什么一定能被6整除吖下边还有一个变式联 线性代数证明题:如果存在正整数k使得A^k=0,则称A为幂零矩阵.证明幂零矩阵的特征值为0. 如果√12a是一个正整数,则a可取的最小正整数为多少 设k为正整数,证明:如果25k+6是两个连续正整数的乘积,那么k也是两个连续正整数的乘积. 关于特征值的一道证明题!证明:若n阶方阵A满足A^k=0(k是正整数),则A的特征值必为零. 证明:如果a为正整数,那么多项式a的三次方减a一定能够被六整除 设k为正整数,证明 如果k是两个连续正整数的乘积如果k是两个连续正整数的乘积那么25k+6也是两个连续正整数的乘积 证明题:a,b是整数,n是正整数,如果a的n次方整除b的n次方,则a整除b. 如果A为非零实对称矩阵,证明 对任意的正整数k,总有A的k次方不等于零 线性代数证明小题一个(只要说思路)如果存在一个正整数k,使得矩阵A^k=0,则矩阵A的所有特征值必为0. 1)证明如果a整除b×c,且a,b互质,那么a整除c(abc均是整数).如果该定理是错误的,举出例子并将其修改,并证明修改后的定理.2)证明如果a,b均为正整数,如果a>b,那么a的平方>b的平方;反之亦然. 设a是一个正整数,b是a的数码重排后得到的正整数,并且a+b=10*10,证明:a的末尾数字为零. 设 n,a,b 为正整数,试证明:如果 n = a * b,a 关于可逆矩阵的证明问题设P是n阶可逆矩阵,如果B=p^(-1)AP,证明:B^m=P^(-1)A^mP,这里m为任意整数.m是正整数 求一道质数证明题对于正整数a和和另外一个大于1的整数n证明如果a^n-1是质数那么a=2 n是质数(提示:因数a^n-1) 已知a为正整数,则(a四次-a的平方+9)是质数还是合数:证明你的结论 证明:如果ab是奇数,那么满足a^2+b^2+c^2的正整数一定不存在.