(sin^4 x+cos^4 x+sin^2 x * cos^2 x)/2-sin2x的最小正周期,最大值和最小值..
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 15:23:39
x){83/DB;9LF
Z
KSH(hT|V˳9
O7?[,ڰgTO3lhrkAU +EWeL6
6̑qF8T2
`X
zH&ckYgÓKI(L'ܫomoP#|:]C[[C@ܮkC r.@D42[[c}J1
`4*4qt<;hsK
WL=m]yӍSi'AI-7j q5iN Mw6[z}6eۋ۱ɼlt'ڐ$z[
化简sin^4x-sin^2x+cos^2x
化简:sin^4 x-sin^2 x+cos^2 x
化简cos^4x+sin^4x
化简:cos^4(X)-sin^4(X)
化简sin^4x+cos^2x
化简(sin^2x-cos^4x+cos^2x-sin^4x)/(sin^2x-cos^6x+cos^2x-sin^6x)
化简[1-(sin^4x-sin^2cos^2x+cos^4x)/(sin^2)]+3sin^2x
(1-(sin^4x-sin^2xcos^2x+cos^4x)/sin^2x +3sin^2x
化简[1-(sin^4 x-sin^2 xcos^2 x+cos^4 x)]/(sin^2 x)+3sin^2 x
求证(cos^2 x-sin^2 x)(cos^4 x+sin^4 x)+1/4 sin 2x sin 4x=cos 2x
化简 1-sin^4x-cos^4x/1-sin^6x-cos^6x
化简(1-cos^4x-sin^4x)/(1-cos^6x-sin^6x)
求值:(1-sin^6 x-cos^6 x)/(1-sin^4 x-cos^4 x)
证明sin^4x-cos^4x=sin^2x-cos^2x
求证sin^4x-cos^4x=sin^2x-cos^2x
证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4
用cos x表示sin^4 x -sin^2 x +cos^2 x
用cos x表示sin^4x-sin^2 x+cos^2 x