若级数a[n]收敛,数列b[n]满足:存在M>0,对任意的n都有级数abs(b[k+1]-b[k])
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 13:09:38
xRMO@;J+xp?&H+( Ø6 Xb_pE1!z#ivgfgR)/Ӌ6I+9S0nˈ{<1)#b=ׅʥ߫
.`%+(C wj1!Cj]tY&&K'0*֧Q0]N2N"6bXRJ)a,`GqUF6m(k0us(%>S#j9L wD@sǶ+=
bEb `
,8d*uٛeQ[( Ew+94-ܢU(X="G$/H
若级数a[n]收敛,数列b[n]满足:存在M>0,对任意的n都有级数abs(b[k+1]-b[k])
有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?
若a(n)为单调有界的正项数列,证明无穷级数∑ a(n+1)/a(n)-a(n)/a(n+1)收敛
级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛a^n-b^n整个在分母上.
证明如果级数∑(1/b)^n收敛a>b>0则∑(1/a^n-b^n)收敛
高数判断题一题若∑(-1)的n+1次方*a(n) 收敛,则数列{a(n)}必定递减我的分析是:根据莱布尼次定理:若交错级数满足单调减和lim(n趋向无穷)a(n)=0则它一定收敛,它是对的,可答案说它是错的
若一级数收敛,则数列极限是多少已知 收敛,则 lim u n= n-无穷 。
当参数a满足什么条件时,级数∑1/(n ^ (a/2))收敛 n=1~+∞ A a>1 B a≥1 C a
设数列{un}收敛于a,则级数(un-u(n-1))=?)
设数列{Un}收敛于a,则级数(Un-U(n-1))=?)
级数收敛与数列收敛相比有什么区别为什么n趋向于无穷时,级数一般项趋于零,而数列一般项趋于常数A
若级数∑an绝对收敛,数列{bn}界,则级数∑anbn绝对收敛(n从1到无穷)数列{bn}有界
设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛
设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛
无穷级数的常数项级数审敛法问题设正项级数∑(顶为∞,底为n=1,下同)a n(n下标,下同)与∑b n均收敛,证明1、级数∑√(a n×b n)收敛2、利用第一小题的结果证明级数∑(√a n/n)收敛
高数高手来,数列{an}收敛,为什么级数∑n从1到∞(a下标n+1 -a下标n)收敛?数列{an}收敛,为什么级数∑n从1到∞(a下标n+1 -a下标n)收敛?
级数a(2n+1)+a(2n)收敛,则级数a(n)收敛.这句话是错的,为什么
判断级数∑[(-1)^n /√n+1/n]是否收敛,若收敛,条件收敛还是绝对收敛?