设向量组α1,α2.,αr是正交向量组 其中α1一定等于不等于0吗?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:25:43
x){n _?rnιFz@ٌ.~k \Vi';=tݬk;{0x:aMR>/;! <ٱbҳ M d?dg-{ba q]mz6yv 7_Nڞ
设向量组α1,α2.,αr是正交向量组 其中α1一定等于不等于0吗? 设{α1,α2,…,αr}为n维正交向量组,Q为正交矩阵,bi=Q*αi,证明{β1,β2,…,βr}也为正交向量组.设{α1,α2,…,αr}为n维正交向量组,Q∈Rn×n为正交矩阵,βi=Qαi,证明{β1,β2,…,βr}也为正交向量组. 设向量α1,α2,…,αr线性无关,非零向量β与α1,α2,…,αr都正交,证明β与α1,α设向量α1,α2,…,αr线性无关,非零向量β与α1,α2,…,αr都正交,证明β与α1,α2,…,αr线性无关 β与α1,α2,…,αr都正交 向量的内积 ,正交向量组设a1=(1,2,3)^T,求非零向量a1,a2,使得向量组a1,a2,a3为正交向量组.上面错了是设a1=(1,3)^T,求非零向量a2,a3,,使得向量组a1,a2,a3为正交向量组。 向量b能由向量组A线性表示,可否说向量组是线性相关的?设向量β可由向量组α1,α2,...,αr线性表示,但不能由向量组α1,α2,...,αr-1线性表 正交矩阵中列向量正交,则行向量一定正交的证明证明:设A=[a1...an]a1..an是一组线性无关的列向量经过施密特标准正交化后B=[b1...bn] b1..bn是标准正交的列向量组所以 BTB=[b1T]..* [b1..bn]= E.(1) E是单 什么是单位正交向量组请问单位正交向量组定义是什么 书上没有诶 单位正交向量组和正交单位向量组是一个意思吗? 正交向量组与正交矩阵 线性代数 向量设向量组(1)α1,α2,...,αr是向量组(2)α1,α2,...,αs的部分线性无关组则()当(2)中得向量均可由(1)线性表示时,r(1)=r(2)我的问题是:∵(1)是(2)的部分无关组 设n维向量组α1,α2,...,αn线性无关,证明:若n维向量β与每个αi(i=1,2,...,n)都正交,则β=0 什么是正交规范向量组? 正交矩阵的列向量为什么一定是正交的单位向量组? 设α使n维列向量,A是n阶正交矩阵,则||Aα||=||α|| 设向量组1:α1,α2,…αs 可由 向量组2β1,β2,β3,.βs线性表出问一下向量组1 线性无关,向量组1 线性相关时r和s的关系 以及向量组2线性无关,向量组2 线性相关时r和s的关系 N维向量空间向量的秩,证明题设A:α1,α2,……,αr,β,γ,…是若干个n维向量构成的向量组,证明α1,α2,……,αr是A的一个最大线性无关组的充要条件是下面条件都成立:(1)α1,α2,……αr与原向量 设向量A,B是一组非正交的基底,为得到正交基底,可在集合【向量A+T向量B,T属于R】中找一个向量与向量A组成一组正交基底,根据上述要求,若A=(1,2),B=(2,3),则T的值为? 设A为n阶正交矩阵,向量α,求证:|Aα |=|α | 设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次,且b1与每个ai内积等于0,b2与每个ai的内积等于0,证明b1 b2线性无关.