AD、CF分别是△ABC的高,在AB上截取AE=AD,EG∥BC交AC于G,求证:EG=CF.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 17:53:21
xRRP31$\H8gtB ; *hA[EQkGG(М$< X^|p&^{}:$ a.`D4zW/[IŁ8^k.1^YB,t"= ZO1/>]g+a3%5 $JLĎR"'R\2팊 SJN YLo MnOD:15_ryD"ȤOt%HY*^$RC.O.R
AD、CF分别是△ABC的高,在AB上截取AE=AD,EG∥BC交AC于G,求证:EG=CF. 在△ABC中,BE CF分别是AC AB两边上的高,在BE上截取BD=AC.在CF上截取CG=AB,连接AD,AG求证AD=AG,AD⊥AG 在△ABC中,已知AD、BE、CF分别是BC、CA、AB三边上的高,求AD、BE、CF三线共点. △ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=Ac,在CF的延长线上截取CG=AB,连如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AD=AG,AD⊥AG BE、CF分别是△ABC的高,点P在CF的延长线上,点D在BE上,且CP=AB,BD=AC.试判断AP与AD有什么关系.理由AD,AP相等垂直 如图,在△ABC中,BE、CF,分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB 连结AD AG 如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高.如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.AG⊥AD 如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG BE、CF分别是△ABC的高,点P在CF的延长线上,点D在BE上,且CP=AB,BD=AC.试判断AP与AD有什么关系.说明你的理由 如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,证AD⊥AG 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高……如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD. 在三角形ABC中,已知AD、BE、CF分别是BC、CA、AB三边上的高,求证:AD、BE、CF三线共点,,用塞瓦定理证,谢谢、 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB连接AD.AG.DG 如图在三角形ABC中,BE,CF分别是AC,AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取CG=AB连接AD.AG.DG 如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG. 25、(12分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何。 △ABC中,AD是△ABC中线,E,F分别是在AB,AC上,且DE⊥DF,则BE+CF和EF的大小关系