大一导数问题一个函数可导的条件是左导数=右导数? 左导数不是左极限么? 那么也就是函数在那一点的左极限等于右极限? 那 可导 和连续的 条件不就一样了么?...刚才我问过这个问题.在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:15:16
xRN@~CޤR UT.rV!hH)ca؝OTQݝoNNNeU0ouxڻƊxpp$?tHͮMh[eX.J;u9,>Uξ/sIԽ3SޞGHNG$6Ya%Yu*|zg'=\f<=_|UP@Vp$PTݔ{z ?'_,8%>
Ò
Uh_h$Ng"9uq,dH(oa[nv.r:?
o0V+BWs3d,:%އ2< of7M>Y3T ꨌJ[kvm%:CD7>̣
大一导数问题一个函数可导的条件是左导数=右导数? 左导数不是左极限么? 那么也就是函数在那一点的左极限等于右极限? 那 可导 和连续的 条件不就一样了么?...刚才我问过这个问题.在
函数可导的条件?左导数等于右导数吗?
对可导函数的间断点一定是第二类间断点这个结论的疑问既然它导函数存在第二类间断点就说明该点的左导数不能等于右导数,那既然如此在该点就违反了导数可导的条件(即左导数=右导数
左导数等于导函数左极限的条件是什么?
在一点可导的条件在一点可导需不需要左导数=右导数=在该点处的函数值
可导函数要求左导数和右导数相等,那f(x)=x^3的左导数和右导数相等吗?f(x)=x^3是有极值点吗
左导数和右导数都存在是其可导什么条件
函数在X0点连续并且可导,那么左导数=左极限=右极限=右导数=f(X0)=f(X0)的一阶导数我还是不太明白 函数在一点存在导数 左(右)导数不是等于左(右)极限吗 书上是这样写的啊 那么应该
分段函数可导的问题像这种分段函数,它在x=2处不连续,但左右导数相等,书上说函数在某点处可导的充要条件是函数在该点的左导数与右导数存在且相等,而可导必连续,那么这种分段函数在x=2
关于左右导数的问题为什么在x=0的时候 函数的右导数不存在 左导数存在?
函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等.例如:f(x)=|x|在x=0处虽连续,但不可导(左导数-1,右导数1) 不懂这个说法,或者说是既然不可导了,为什
有极限-连续-导数有极限:左极限=右极限 连续:左极限=右极限=函数值所以得出:连续必有极限,有极限未必连续(这好象还算是理解了)可导:左导数=右导数(导数不就一个公式吗,比如X的
导数与连续有极限:左极限=右极限 连续:左极限=右极限=函数值所以得出:连续必有极限,有极限未必连续(这好象还算是理解了)可导:左导数=右导数(导数不就一个公式吗,比如X的平方
一道大一导数问题,请达人进设f为可导函数,证明:若x=1时有d/dx f(x^2)=d/dx f^2(x),则必有f(1)的导数=0或f(1)=1
如果函数 在 处可导,那么是否存在点 的一个邻域,在此邻域内 也一定可导根据左导数和右导数请构造一下
请教分段函数连接点处可导性的讨论?我都快被全书这部分整蒙了,有时候能用求导法则求,有时候不能.有两个问题,一是如果一个函数f(x)在X=a处的左导数和右导数都存在(没有说是否相等),那可
函数f(x)在x0的左导数存在是f(x)在x0可导的什么条件1充分条件2充分必要条 3必要条件4 既不充分也必要条件
函数某点导数存在 与函数某点 某邻域可导 区别如F(X0) 导数存在 与 F(x) 在X=X0的某邻域可导前者X=X0处导数存在 左导数等于右导数 那么分别趋于 +X0 于 -X0 导数都存在(X0