设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g(x)=∞,且g(x)~f(x) (x->X).这是道例题,过程里有“由函数极限的局部保号性有g(x)/f(x)>=1/2”为什么g(x)/f(x)>=1/2?这个地方不知道怎么理解证明:由

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:20:43
xWnG~ڄ^F UHQ/EJ.P؎ !Mꄟ #x<3\ !n(J =g97g UOǻÿOTLB]ǚ&x KOgsE>[hUk2q(r34c; 3 X:,1_21q_clNZ'_iVh^Hs`4;VtY_^*.Tp AAoc/i83.=wJ7nZ>5\sãO&=z͖\,~.|ƛ;MwuPuؠ0WHljn`,v\ԣqt ت+0Epx b2wH#U;\A A `4߇# P̕ ո\dgѵHJ.4Hh梤*MKV=Glw&( 'tEV)MlJёΊčbaCQX5{()h»Z6N -'랞cd/cyQG~E%H{?\m/|5KZFLG\ΕH' oLk|n76Ȫ*7hHFbS"ǰ< u*TB}'? "{rL_ ]4I3)4h*4}2xiȝK&{-;|/D(dfE.mtD% .X07`7
设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )f(x)=0 设f(x)是可导函数,且lim f'(x)=5,则lim[f(x+2)-f(x)]= 设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x) 设f(x)具有连续导数,且满足f(x)=x+∫(上x下0)tf'(x-t)dt求lim(x->-∞)f(x) 设f (x)在x=0处可导,且f (0)=0,求证:lim(x→∞)f (tx)-f (x)/x=(t-1)f' (0) 设lim(x->X)f(x)=∞,且x->X时,g(x)的主部是f(x)证明lim(x->X)g(x)=∞,且g(x)~f(x) (x->X).这是道例题,过程里有“由函数极限的局部保号性有g(x)/f(x)>=1/2”为什么g(x)/f(x)>=1/2?这个地方不知道怎么理解 设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x 关于微积分某性质的疑惑设f(x)=∞(x->X),且x->X时,g(x)主部是f(x),则g(x)=∞(x->X),且g(x)~f(x)(x->X).证明:由于g(x)=f(x)+o(f(x))则lim[g(x)/f(x)]=lim[1+o(f(x))/f(x)]=1由函数极限的局部保号性有g(x)/f(x)>=1/2 【这 设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x = 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导 设f ' (0)=a,g ' (0)=b,且f(0)=g(0),计算lim((f(x)-g(-x))/x) lim下面是x→0 高数题:设f(x)>0,x趋向于a且lim f(x)=A ,试证:lim√f(x)=√A 设f(x)连续,g(x) =∫(1,0)f(xt)dt,且lim x→0 f(x)/x =A,求 g'(x).如题 泰勒公式的证明题设lim(x->0)f(x)/x=1 且f''(x)>0 证明f(x)>=x 设函数f(x)在x=2处连续,且lim(x→2)f(x)/(x-2)(x→2)=3,求f'(2). 设f(x)有二阶导数,在x=0的某去心邻域内f(x)≠0,且lim f(x)/x=0,f'(0)=4,求lim (1+f(x)/x)^(1/x) 设limf(x)=A,且A>0,证明lim根号f(x)=根号A f(x)在无穷区间(x0,+∞)内可导,且lim(x→+∞)f'(x)=0,证明:lim(x→+∞)(f(x)/x)=0