设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:34:05
设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =
x){n_F³~ϦnxcJӎ9v  ̵I*'_~ vՀY*l"  1]q  @Q[n<;klsV<]|V M@=mOyo߳S¦Ɏ}Ovz O7l|ɮSt^B@ VŞMmy{ysed>p

设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =
设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =

设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =
f'(0)
lim(x->0)f(x)/x = lim(x->0) (f(x)-f(0)) / (x - 0) = f'(0)

f(x)在0处的导数值。罗比达法则

举个例子就行了啊,令f(x) = x2
则f(x) / x = x
故,结果为0