数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:03:45
xU_OP*M,-[mɨ_Mߖܙјtn8P dġl qSD{)O|Z]};]\ǤX[E38=qe#ݴM=cgޡml`嫖[7`8YWF{a:6"}|]A6wNJë847I
p]xv?i'o~)HG5[ @z:(af"-<ܼH4EM}p C:Ҍ~:Ŕd|Vl-1ÄxEO<@˘{F
1=ܙ6ϓ
B
$5~hY, ֍=gkiJeP(7@X #Hk`n"E H]@Dq`r4ͩ&0?~>{g ' )ڤMF-|rz_KlK:#wJUǓT8'z389&&*Ӝ= cf'U<
-ܠI(`?6)Cخ)i0=wJpuߎNIdP"U|y?bGқT8p_DvD,oY"e%2][eaH[`F8Pw/XfJl[.WHN[Y ~Ya px6Wә61\^UEQ ;
kҩf1oQ]
19、已知数列{an},{bn}满足a1=2,2a n=1+a na n+1,bn=an-1(bn不等于0)求证:数列{1/bn}是等差数列,并求数列{an}的通项公式.
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式
设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.
已知数列{an},{bn}满足a1=2,2an=1+2an*an+1,设{bn}=an-1求数列{1n}为等差数列急!!!
已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}的前n项的和Tn
(高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项公式(2
【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项
正项数列an满足:a1=3/2,a(n+1)=3an/2an+3数列bn满足bn·an=3(1-1/2^n),求bn的前n和
已知数列{An}中,a1=3/5,an=2-1/A(n-1)(n>=2)数列{bn}满足bn=1/an-1,求证bn是等差数列求数列{An}中的
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式
数列an及正项数列bn满足:a1=0.5,a(n+1)=1除以1+bn,an+bn=1,求bn的通项公式,比较ln(1+bn)与bn的大小
两正数数列{an} {bn}满足:an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列 a1=1 b1=2 a2=3.求{an} {bn}通项公式.
数列an,bn满足a1=b1=1,an+1-an=bn+1/bn=2,则数列ban的前10项和为
设数列{an},{bn}满足a1=1,b1=0且(高二数学,a(n+1)=2an+3bn且b(n+1)=an+2bn.(1)求证:{an+根号3bn}和{an-根号3bn}都是等比数列并求其公比;(2)求{an},{bn}的通项公式(n均为正整数)是(根号3)bn
已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*求数列bn的通项公式()中的都为下标
数列{an}{bn}满足an=5an-1 -6bn-1 bn=3an-1 -4bn-1 且a1=a,b1=b求{an}{bn}通项
两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的
数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.