证明:a为秩是r的m*n矩阵 证明存在可逆阵P和Q,使得PA的后m-r行,AQ的后n-r列全为0.……总是感觉线性代数抓不着头绪……现在学矩阵那章对这种证明题苦手啊……有好心人稍微指点一下么……
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 07:30:28
xSNP~Tsۤo .6
{ڕ?lFl4jjkU("s/|+u:ue!9\ʍjhbn5.PpwE|-;p4{hṾ(FcgKIN{|Mfa}K :S:W.xwx:YXPxKl#"*ߐ2H:#W'xtnx8aAF5Zp{]
"DoҞcs%XWQ8_U&G$1`;'mEB4;-Dz X,^Y&<ŧ4,?Sbp"H=+p
*tV(:Nܜa
gd4I<4N
9S!xl;/;fbF>^u:I&Ӵ
Io8*\ېKt6g`ߦ^~V5VTyN+)j 0(
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ线性代数
4、设A是m×n矩阵,若存在非零的n×s矩阵B,使得AB=O,证明秩r(A)﹤n.A =
设r(Am*n)=m,证明:存在秩为m的n*m矩阵B,使得AB=E
设A是m*n矩阵,若存在非零的n*s矩阵B,使得AB=O,证明秩r(A)
证明:a为秩是r的m*n矩阵 证明存在可逆阵P和Q,使得PA的后m-r行,AQ的后n-r列全为0.……总是感觉线性代数抓不着头绪……现在学矩阵那章对这种证明题苦手啊……有好心人稍微指点一下么……
设A是m*n矩阵 证明R(A)=m的充要条件是存在n*m矩阵B,使AB=E
已知A为m*n阵B为n*m矩阵 证明r(AB)≦min{r(A),r(B)},r表示矩阵的秩
一道线代证明题设A为s*n矩阵,证明:存在一个非零的n*m矩阵B,使得AB=O的充要条件是r(A)
设A是m*n矩阵,B是n*s矩阵,证明秩r(AB)
设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵β≠0使得A=αβ^T
设A为秩为m的m×n型矩阵,证明:存在秩为m的 n×m型矩阵B,使得AB=E证明不用很详细,关键是思路!
设A是一个秩为r的s×n矩阵,证明存在一个秩为n-r的n×(n-r)的矩阵C,使AC=0
设m×n是矩阵A的秩为n,证明:矩阵A^TA为正定矩阵
一道矩阵证明题...实矩阵A_(m×n) r(A)=m A’ 为A的转置矩阵 证明 r(AA’)=m.
A是m*n的矩阵,B是n*m矩阵,若m>n,证明答案是r(AB)