设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵β≠0使得A=αβ^T

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 07:26:32
设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵β≠0使得A=αβ^T
xRMN@NI&źnIz$3.lHD*E#hBҊ@@$M[`ᾇ03 Һs W7}oF.VwaewQ

设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵β≠0使得A=αβ^T
设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...
设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵β≠0使得A=αβ^T

设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵β≠0使得A=αβ^T
充分性:若A=ab^T,由于r(a)=r(b)=1,因此r(A)=1.综上,r(A)=1.
必要性:若r(A)=1,则A的列向量组的秩是1,其极大无关组记为a,于是A的列都可以用a线性表出,即存在b1,b2,...,bn,使得ai=bia,其中ai是A的第i列.令b=(b1,...,bn),则
A=ab^T.

设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵β≠0使得A=αβ^T 设A为m×n矩阵,证明方程AX=Em有解的充分必要条件为r(A)=m 线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC 设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC 设A与B都是m*n矩阵,证明矩阵A与B等价的充分必要条件是:r(A)=r(B) 设A为m×n实矩阵,证明r(A^T A)=r(A) 设A为n阶矩阵,证明r(A^n)=r(A^(n+1))线性代数 线性代数大学试卷两题1.设A(m*n)为实矩阵,则线性方程组Ax=0只有零解是矩阵(A^T *A) 为正定矩阵的( 充分条件 )2.设 A(m*n)为实矩阵,秩r(A)=n ,则 ( )(A) 相似于 ; (B)A*(A^T) 合同于E ;(C) 相似 设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0 设A,B分别是m*n,m*p的矩阵,试证明;存在n*p矩阵X,使得AX=B的充分必要条件是 r(A)=r(A,B),其中(A,B)表示A,B为字块作成的分块矩阵. 设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,使得A=P(Er O)Q(O O)是一个大括号 一道矩阵证明题...实矩阵A_(m×n) r(A)=m A’ 为A的转置矩阵 证明 r(AA’)=m. 设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ线性代数 设A为m×n矩阵,证明AX=Em有解的充要条件是R(A)=m 设A为m×n矩阵,证明AX=Em有解的充要条件是R(A)=m 设A,B均为m*n矩阵,证明:r(A+B) 设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵 设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题