设f(x)在闭区间[a,b]上连续,x1,x2,...,xn是区间[a,b]上的点,求证在区间[a,b]上至少存在一点t,使得f(t)=(1/n)f(x1)+(1/n)f(x2)+...+(1/n)f(xn).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 05:44:40
xSn@~XX'rJHTB"9iSLKڦ!@jOD0A꣠]N~~ 4I/=E흝ofgV&T0+Ʒak 9Nщ7hوpXn}z;=ٽڙ .fb@nd8ׇত#!/R'-LC #RfGY-ܹ%5=2:Ѻ$جe~J-Nvi dt$zV>taҳtn#όN΂J]QjcY>ΟܼI4+EpQb&XsW M}"?FwjP6LnTSB+] 5UVA'|%9qb!:[s`7vq>j/?&<~)b47t:(n#9rA93d*b?AF K>)eT,W\aKU K{sKU\HV>f:l&oLVg![P-)BH˴/zmT me!EIe7n؍")<ӵ˂ѨOs9Lz,>Kĩ-8-B
设函数f(x)在闭区间[a,b]上连续,a 设f(x)在闭区间(a,b)上连续,且a 设函数f(x)在闭区间[a,b]上连续,a 证明题:设f(x)在闭区间[a,b]上连续在开区间(a,b)内可导……设f(x)在闭区间[a,b]上连续在开区间(a,b)内可导,0 设f(x)在闭区间[a,b]上连续,x1,x2,...,xn是区间[a,b]上的点,求证在区间[a,b]上至少存在一点t,使得f(t)=(1/n)f(x1)+(1/n)f(x2)+...+(1/n)f(xn). 设函数f(x),g(x)在区间[a,b]上连续,且f(a) 大一高数求证在(A,B)连续设函数F(X)在区间(A,B)上满足李普希茨条件:存在常数L,使对任给的X1,X2属于(A,B),都有[F(X2)-F(X1)]小于等于L*{X2-X1},证明:F(X)在区间(A,B)上连续PS{}表示绝对值 求闭区间上连续函数的性质的证明证明:设f(x)在[a,b]上连续,a 闭区间上连续函数的性质de题目1.设f(x)在[a,b]上连续,a 高等数学(关于闭区间连续函数的性质)一、设k1,k2为任意正常数,函数f (x)在闭区间[a,b]上连续,x1,x2 为区间(a,b)内任意两点.证明:在(a,b) 内至少存在一点ξ ,使得k1f(x1)+k2f(x2)=(k1+k2)f(ξ).二、证明 证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续. 高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有| 高数题:1 设f(x)在[a,b]内连续 x1,x2属于(a,b),x1 关于定积分,设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[a,x0],(x0,x1],(x1,x2],…,(xi,b],可知各区间的长度依次是:△x1=X0-a,△x2=X1-x0,…,△xi=b-xi.这里的长度,我怎么看都觉得不对啊 关于定积分,设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[a,x0],(x0,x1],(x1,x2],…,(xi,b],可知各区间的长度依次是:△x1=X0-a,△x2=X1-x0,…,△xi=b-xi.这里的长度,我怎么看都觉得不对啊 设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,∫b到a f(x)dx=0,证在闭区间a,b上恒有f(x)=0 设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c属于(a,b)使得f(c)>f(a)证明在(a,b)内至 一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)