高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:47:45
高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|
xRJ@~L5IλmyQP$G)zC4ZZXP >Dͦͩ$ C3|&; OQ]oNazdⵛnTyZTuE_ K}k*dK^nޱm@^%k))X/;a͝l+N6Li!qF~ݔ5%$^3 i@]QVvg zpx׃#oՍ1o ~Y cT8<eVdw/56e N0b4+s]GK k/.%t׈P

高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|
高数中值定理问题
1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有
A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M
2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|f(x2)-f(x1)|≤(x2-x1)^2,则必有
A f'(x)≠0 B f'(x)=x C f(x)=x D f(x)=C(常数)

高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有|
因为f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导
所以|f(x)|=|f(x)-f(0)|=|∫f'(x)dx|<=∫|f(x)|dx<=M*1=M
选C
设x2=x1+Δx(Δx≠0)
则|f(x2)-f(x1)|/|x2-x1|<=|x2-x1|
即|f(x1+Δx)-f(x1)|/|Δx|<=|Δx|
两边取极限Δx->0
则|f'(x1)|<=0
所以f'(x1)=0
所以f(x)=C
选D

第一题选则D,第二题选择C

高数中值定理问题1、设f(x)在闭区间[-1,1]上连续,在开区间(-1,1)内可导,且|f'(x)|≤M,f(0)=0,则必有A |f(x)|≥M B |f(x)|>M C f(x)|≤M D f(x)|<M2、若f(x)在开区间(a,b)内可导,且对(a,b)内任意两点x1、x2,恒有| 拉格朗日中值定理:设f(x)=x的3次方,已知其在闭区间[0,1]上满足拉格朗日中值定理,求ξ 高数微积分【中值定理】设f(x)在[a,b]上可微,且f(0)=0 |f’(x)|≤M|f(x)| M为正常数,证明f(x)=0在[0,1/(2M)]中反复用拉格朗日中值定理,能推出f在该区间内恒为0 关键就是这个 高数连续与可导问题在中值定理那章里面 几个定理都会有f(x)在开区间(A,B)可导 在闭区间[A,B]连续 的前提 这里的开闭区间是怎么定义出来的啊?换做是在闭区间内可导 高数 中值定理问题 一题高数题,微分中值定理那块的设f(x)在闭区间[1-,1]上连续,在开区间(-1,1)上可导,且|f`(x)|=MB.|f(x)|>MC.|f(x)| 求问柯西中值定理的几何意义柯西中值定理设函数f(x)与函数g(x)满足:(1)在闭区间[a,b]:(2)在开区间(a,b):(3)在区间(a,b)内g'(ε)≠0.那么,在(a,b)内,至少存在一点ε,使得[f(b) - f(a)]/[g(b) - g(a)]=f'(ε)/ 高数中值定理问题设f(x)在[1,2]上具有二阶导数f''(x),且f(2)=f(1)=0,如果F(X)=(x-1)f(x),证明至少存在一点m属于(1,2),使得F''(m)=0 求函数分f(x)=x^2 在区间[0,1]上满足拉格朗日中值定理的中值 把柯西中值定理中的f(x)与在F(x)在闭区间换成在开区间后, 高数,微分中值定理问题. 高数,微分中值定理问题, 高数微分中值定理问题, 证明题求思路,是否要用到拉格朗日中值定理?设任意函数f(x)在闭区间[a,b]上连续,且a 一道高数微分中值定理不等式证明题设x>0,证明:ln(1+x)>(arctanx)/(1+x).在用柯西定理证明的时候,令f(x)=(1+x)ln(1+x),g(x)=arctanx,但是x明明是大于0的,为什么可以对[f(x)-f(0)]/[g(x)-g(0)]应用柯西定理?x 高数!中值定理! 高数 中值定理 高数中值定理证明设函数f(x)在〔-2,2〕上可导,且f(-2)=0,f(0)=2,f(2)=0.试证曲线弧C:y=f(x)(-2