平面向量计算平面内有向量OA=(1,7) OB=(5,1),OP=(2,1) 点Q为直线OP上的动点,当向量QA·QB取最小值时,求向量OQ的坐标.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:25:39
x͐ON@ƯrA ٱF/PM1i&.6kYVLiޗOo4~+sY|2&59;ee,2 BЩsWBȼ<{N= mKUuX?Ħatfzͼ+wv[RmטO`bUC, D5b@
)k$EV3Q+\E2)]揣4zNeȺq6Md.zPx4"{aQW&/r
已知坐标平面内向量OA=(1,5),向量OB=(7,1),向量OM=(1,2),
平面向量计算平面内有向量OA=(1,7) OB=(5,1),OP=(2,1) 点Q为直线OP上的动点,当向量QA·QB取最小值时,求向量OQ的坐标.
已知平面坐标内O为坐标原点,OA向量=(1,5),OB向量=(7,1),OM向量=(1,2),P是线主要想问一下线段OM和直线OM做出结果有差别吗?已知平面坐标内O为坐标原点,OA向量=(1,5),OB向量=(7,1),OM
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与与向量OC的夹角为30度,平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的 夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为
若平面内三个向量 OA OB OC 其中=120°平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为 因为
一直平面有四点OABC,O是三角形外心,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA=-1,则三角形ABC的周长(向量OA*向量OB=向量OB*向量OC=向量OC*向量OA=-1可以得出是正三角形,O既是外心也是内心吧?)
平面内有3个非零向量向量OA向量OB向量OC它们的模相等并且两两夹角是120度求证向量OA+向量OB+向量OC=零向量急需!
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与...平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与向量OC的夹角为30度,平面内有三个向量OA,OB ,OC 其中
(1)若O是△ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则△ABC的形状为(2)若D为三角形ABC的边BC的中点,△ABC所在平面内有一点P,满足向量PA+向量BP+向量CP=0向量,设|向量AP|/|
平面向量基本定理的题平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为我自己想,为什么a+b
已知平面内A,B,C三点在一条直线上,向量OA=(-2,m),向量OB=(n,1),向量OC=(5,-1),且向量OA垂直于向量OB
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为 因为向量OA与向量OB的夹角为120度,所以向
平面内有向量OA=(1,7),向量OB=(5,1),向量OP=(2,1),点Q为直线OP上的一个动点.(1)当向量QA*向量QB取最小值时,求向量OQ的坐标?(2)当点Q满足(1)的条件和结论时,求cos
如图,有三个平面向量OA向量,OB向量,OC向量,其中OA向量与OB向量的夹角为120°,如图,平面内有三个向量OA,OB,OC,其中OA与OB的夹角为120°,OA与OC的夹角为150°,OA模长=OB模长=1,OC模长为2√3,若OC向量=xOA向
已知O是平行四边形ABCD所在平面内任意一点,求证:OA向量+OC向量=OB向量+OD向量
如图,有三个平面向量OA向量,OB向量,OC向量,如图,平面内有三个向量OA,OB,OC,其中OA与OB的夹角为120°,OA与OC的夹角为150°,OA模长=OB模长=1,OC模长为2√3,若OC向量=xOA向量+yOB向量,则X+Y=?
向量 (29 12:56:5)设平面内的向量OA(向量)=(1,7),OB(向量)=(5,1),OM(向量)=(2,1),点P是直线OM上的一个动点,求当PA(向量)*PB(向量)去最小值时,OP(向量)的坐标及∠APB的余弦值.