设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X=sum(Xn/(3^n))设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:31:15
xRMO@+*UY'USRrGО*ZQ
4*JM'*D\Onr/tl9q@=pZy3ovތK'4w=YjF^l+]Gyܩ
**Lj%
H5kOT+Mmא+Bwo-xs}g.wSF;ו?˽(V*>">bnB!*2Y
nXO
OG^nmd[;^%lՆ,2hnKl 'Q7ci@?潿pT@>_m*
]D":S1QU2W Pe>fp@뉚+8dpţiyआ#kmi4D̙գ%K/Mp$YbL|jڠ [j2M)S_ʽYc
设随机变量X1与X2相互独立同分布,其密度函数为p(x)=2x,0
设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的一个.
概率论问题求教设三个连续型随机变量X1,X2,X3互相独立同分布,则P(x1
设随机变量X1,X2,…,Xn(n>1)d独立同分布,且其方差为a^2>0,令Y=1/nEX1,则
设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)}=1/n
设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X=sum(Xn/(3^n))设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷
设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n
设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.
大学概率论,设x1,x2,...,x48为独立同分布的随机变量,共同分布为U(0,5),其算术平均为1/48ΣXi,试求概率p(2
设随机变量X1,X2,X3相互独立,其中X1~b(5,0.2),X2~,X)4,0(N3服从参数为3的泊松分布.设随机变量X1,X2,X3相互独立,其中X1~b(5,0.2),X2~,X)4,0(N3服从参数为3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=
二维随机变量函数的分布问题设随机变量X1X2均服从参数为1的指数分布,且相互独立,则min{X1,X2}服从__
随机变量X1,X2,……Xn独立同分布,方差为σ^2,Y=1/nΣ(1~n)Xi,则D(X1-Y)=
【请教高手】概率论多维随机变量证明题设连续随机变量X1、X2……Xn独立同分布,试证P(Xn>max(X1、X2、……Xn-1))=1/n
康托分布的期望和方差怎么求?《概率论基础教程》习题设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷}的分布称为康托分布,求E(X)和VA
大学概率题,关于期望和方差的设随机变量X1,X2,...,Xn相互独立同分布,其概率密度为:f(x)=2e^[-2(x-t)] ,x>t ;0,x
设随机变量X1,X2,X3独立同分布,且Xi(i=1,2,3)的分布列为:P(Xi=k)=1/3 (k=1,2,3),求Y=max{X1,X2,X3}的数学期望
概率,证明随机变量,服从(0,1)分布,相互独立设随机变量X1 X2都服从(0 1)分布,若他们不相关,证明他们相互独立
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),=3的泊松分布,记