设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:11:12
xRJP~rDwÁpzǢ Ϣ Z m椇sjb@~-#|@U"OY=wIGs2L`? AU4Jyq4$+'_K(K2K:q`K&G~IN\d2dcL];]DB I cY( gj /޼Ak~@=l*o-oof=IuT'D;bMz!I0u\ʩu? u.EH;o,-'T{I
设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n 设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)}=1/n 设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立. 设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X=sum(Xn/(3^n))设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷 设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的一个. 康托分布的期望和方差怎么求?《概率论基础教程》习题设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷}的分布称为康托分布,求E(X)和VA 概率中心极限定理,如果X1 X2 X3 .Xn是独立同分布的随机变量且具有相概率中心极限定理,如果X1 X2 X3 .Xn是独立同分布的随机变量且具有相同的数学期望,他是说X1 X2 X3具有相同的数学期望吗?可是 【请教高手】概率论多维随机变量证明题设连续随机变量X1、X2……Xn独立同分布,试证P(Xn>max(X1、X2、……Xn-1))=1/n X1,X2...Xn相互独立,都为参数为a的指数分布,求X1+X2+...+Xn的分布? 数理统计 数字特征请给出下列数字特征的值:D(S的平方)= E[max(X1,X2,...Xn)]= D[max(X1,X2,.Xn)]=E[min(X1,X2,...Xn)]= D[min(X1,X2,.Xn)]= 其中 X1,X2,.Xn服从独立同分布. 设随机变量X1,X2,……Xn相互独立同分布,且都有密度函数f(x)=1/π(1+x^2),证X1,X2……Xn不满足中心极限定理 设随机变量X1,X2,…,Xn(n>1)d独立同分布,且其方差为a^2>0,令Y=1/nEX1,则 设随机变量X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp,求Ex,Dx,xi与x的相关系数设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp,求Ex,Dx,xi与x的相关系数 随机变量X1 X2 ...Xn 独立同分布 同分布是不是说这些变量的方差 期望都相等?随机变量X1 X2 ...Xn 独立同分布 且他们方差 期望都存在 同分布是不是说这些变量的方差 期望都相等? 大学概率题,关于期望和方差的设随机变量X1,X2,...,Xn相互独立同分布,其概率密度为:f(x)=2e^[-2(x-t)] ,x>t ;0,x 设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?我算过EX,是0啊,EX是存在的,为什么答案是不适用呢? 关于概率论的2道题目1、设随机变量X1,X2,…Xn相互独立,且X1,X2,…Xn都有[0,a]上服从均匀分布,记U=max(X1,X2,…Xn),V=min(X1,X2,…Xn),求U、V的联合概率分布率 2、投一颗骰子,直到点数全部出现,求投掷次 设随机变量X1,X2,.Xn,...是独立同分布,其分布函数为F(X)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数律对此序列 :(A)适用 (B)当常数a,b去适当的数值时适用 (c)不适用(D)无法判断 为何辛钦大数定律