设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?我算过EX,是0啊,EX是存在的,为什么答案是不适用呢?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 01:59:53
设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?我算过EX,是0啊,EX是存在的,为什么答案是不适用呢?
xRnQBRe2sa.(Z7sf ja`$>keZ)Z҇NiO9g੿T|i;{}k^X3q0oFTNsT4>NV_#)݋PսvbdN#In%SnINɧ-@!à_F;j_@#D]aV+3(9{l@j6J"ԮƮS{I}d85 5zs>>v#M{ɆR]\b(MTo&/6nji[92Y%<ݡmhF}#hth]lA9m h9"}.R89?SC]H Jğd I-ΤuZI)牤 ̳wO`+ɹT$.p,/WĆdQYN 's!y>T!%&Y"q~*+q .a%B@ J|XBNdBQ*""w5Oܱ [|o[+}aP>2KNq?AD \i9I7iuv:.o&1O`c5}5fdt Fb

设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?我算过EX,是0啊,EX是存在的,为什么答案是不适用呢?
设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?
我算过EX,是0啊,EX是存在的,为什么答案是不适用呢?

设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?我算过EX,是0啊,EX是存在的,为什么答案是不适用呢?

         辛钦大数定律对此序列不适用.原因是随机变量序列中每一个随机变量的数学期望都不存在.具体为什么,看下面的说明.

 

若取上面的a=0,不难发现xf(x)在0到正无穷上的积分是发散的, xf(x)在负无穷到0上的积分也是发散的,所以数学期望不存在.

【请教高手】概率论多维随机变量证明题设连续随机变量X1、X2……Xn独立同分布,试证P(Xn>max(X1、X2、……Xn-1))=1/n 设随机变量X1,X2,…,Xn(n>1)d独立同分布,且其方差为a^2>0,令Y=1/nEX1,则 设随机变量X1,X2,……Xn相互独立同分布,且都有密度函数f(x)=1/π(1+x^2),证X1,X2……Xn不满足中心极限定理 设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)}=1/n 设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望 设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的一个. 设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n 随机变量X1,X2,……Xn独立同分布,方差为σ^2,Y=1/nΣ(1~n)Xi,则D(X1-Y)= 设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X=sum(Xn/(3^n))设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷 设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立. 设随机变量X1,X2,…Xn相互独立,且都服从(0,1)上的均匀分布.问:(1)求U=max{X1,X2,…Xn}数学期望. 关于概率论的2道题目1、设随机变量X1,X2,…Xn相互独立,且X1,X2,…Xn都有[0,a]上服从均匀分布,记U=max(X1,X2,…Xn),V=min(X1,X2,…Xn),求U、V的联合概率分布率 2、投一颗骰子,直到点数全部出现,求投掷次 概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布 ,其方差为σ^2,Y=1/n∑(1~n)Xi,求Cov(X1,Y) 设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )A.cov(X1,Y)=(λ^2)/n B.cov(X1,Y)=λ^2C.D(X1,Y)=[(n+2)/n]*(λ^2) D.D(X1,Y)=[(n+1)/n]*(λ^2) 随机变量X1,X2……Xn均服从标准正态分布且相互独立,记X(1)=minXi(1 康托分布的期望和方差怎么求?《概率论基础教程》习题设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷}的分布称为康托分布,求E(X)和VA 设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知lim n趋向无穷大P﹛ ﹜=Φ(x) 设随机变量X1,X2,…,Xn,…独立同分布,其分布函数为F(x)=a+(1/π)*arctan(x/b),b≠0,则辛钦大数定律对此序列适用吗?我算过EX,是0啊,EX是存在的,为什么答案是不适用呢?