特急:设函数f(x)在区间[0,2a]上连续,证明:∫ f(x)dx)=∫ [f(x)+f(2a-x)]dx,第一个∫ 符号的上下分别为2a 和0,第二个∫ 符号的上下分别为a和0.并由此计算∫ [(xsinx) / (1+cos^2 x)]dx.∫ 符号的上下分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 04:28:10
xJP_env"1]QZ6{WI2%ȫ9ߟsfQ
W/hߧy(T+O Qz
^Ϣ^[m!
(h^%N,+@n@1j
[ZרնR*4 qv]y@9~%̯)yő7`|7?05!50ӁZ"tDPxʨ\WN">B`?r3(eo]oɊ>>h0A}qfLOUŭH`oLAK ,$%
特急:设函数f(x)在区间[0,2a]上连续,证明:∫ f(x)dx)=∫ [f(x)+f(2a-x)]dx,第一个∫ 符号的上下分别为2a 和0,第二个∫ 符号的上下分别为a和0.并由此计算∫ [(xsinx) / (1+cos^2 x)]dx.∫ 符号的上下分
设a>0,函数f(x)=(alnx)/x,求f(x)在区间[a,2a]上的最小值f(x)递减。
设函数f(x)在闭区间【0,2a】上连续,且f(0)=f(2a),试证方程f(x)=f(x+a)在闭区间【0,a】上至少有一个实根
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§ 使f(§)=f(§+a)
设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(a+1)
设函数f(x)=根号x'2+1-ax,其中a>=1,证明:f(x)在区间[0,+&)上是单调递减函数
设函数f(x)在闭区间[a,b]上具有二阶导数,且f(x)>0,证明∫(a,b)f(x)dx>f(设函数f(x)在闭区间[a,b]上具有二阶导数,且f(x)>0,证明∫(a,b)f(x)dx>f(a+b/2)(b-a)
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
已知函数f(x)=x|x-2|求函数f(x)的单调区间;解不等式f(x)<3;设a>0,求函数f(x)在【0,a】上的最大值
设函数f(x)=(根号(x^2+1))-ax,当a≥1时,试证明函数f(x)在区间[0,+∞]上是单调函数.设函数f(x)=(根号(x^2+1))-ax,当0<a<1时,试证明函数f(x)在区间[0,+∞]上是不是单调函数.要定义解法,求导没学,
设函数f(x)在R上是偶函数,在区间(-无穷大,0)上递增,且f(2a的平方+a+1)
设函数F(X)在开区间(0,2a)上连续,且f(0)=f(2a),证明在零到A上至少存在一点X,使f(x)=f(a+x)
设函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b)=0.证明存在K∈(a,b),使得3f'(k)+2f(k)=0
设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单调性,并证明.
设函数f(x)=(x+a)/(x+b) (a>b>0),求函数的单调区间,证明其在单调区间上的单调性
设函数f(x)在R上是偶函数,在区间(负无穷,0)上递增,且f(2a2+a+1)
设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)