设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单调性,并证明.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:50:58
设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单调性,并证明.
x){nmO>!MBO{v%:Q')Ɏg3?]4@#@SiǒgֺjiƁV( &&4?w <ݹg3lf;u~qAb!6`NRBFi& GxԂ

设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单调性,并证明.
设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单调性,并证明.

设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单调性,并证明.
a

bu hui

设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单调性,并证明. (1)设f(x)是R上的任意函数,则下列叙述正确的是A,f(x)f(-x)是奇函数 B,f(x)|f(x)|是奇函数C,f(x)-f(-x)是偶函数 D,f(x)+f(-x)是偶函数(2)定义在区间(-∞,+∞)上的奇函数f(x)为单调增函数,偶函数g 设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(a+1) 如果函数f(X)在区间[ a,b]上是增函数,且最小值为2,f(x) 是偶函数,则f(x) 在区间[-a,-b]上最小值= 1.已知f(x)是偶函数,在区间[a,b]上位减函数(0 已知f(x)是偶函数,它在区间[a,b]上是减函数(0 已知f(x)是偶函数,它在区间[a,b]上是减函数(0 !急!求助高一数学两道选择题!(1)设f(x)是R上的任意函数,则下列叙述正确的是 A,f(x)f(-x)是奇函数 B,f(x)|f(x)|是奇函数 C,f(x)-f(-x)是偶函数 D,f(x)+f(-x)是偶函数 (2)定义在区间(-∞,+∞)上的 .设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明: 已知f(x)是偶函数,它在区间[a,b]上是减函数(0<a<b),证明f(x)在区间[-b,-a]上是增函数 定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间 零到正无穷 左闭右开 上的图像 与 f(x)的图像重合,设a>b>0,四个不等式:f(b)-f(-a)>g(a)-g(-b)f(b)-f(-a)g(b)-g(-a)f(a)-f(-b) 设函数f(x)在区间(a,b)内恒满足,|f(x)-f(y)| 设函数f(x)在区间(-a,a)(a>0)内为奇函数且可导,证明:f'(x)是(-a,a)内的偶函数. 高一数学题关于奇偶性的.定义(正无穷,负无穷)的奇函数f(x)为增函数,偶函数g(x)在区间(0,正无穷)的图像与f(x)的图像重合,设a>b>0,给出下列不等式.1、f(b)-f(-a)>g(a)-g(-b)2、f(b)-f(-a)g(b)-g(-a)4、f(a)-f( 设函数f(x),g(x)在区间[a,b]上连续,且f(a) 数学偶函数单调性题设F(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(-5,-2)上是( )设F(x)等于(m-1)乘以x的平方加2mx加3为偶函数,则f(x)在区间(-5,-2)上是( )A.增函数B.减函数C.不具有单调性D. 关于函数的2道题1.设f(x)是R上任意实数,下列叙述正确的是A f(x)乘f(-x)是奇函数 B f(x)乘绝对值f(-x)是奇函数C f(x)+f(-x)是偶函数 D f(x)-f(-x)是偶函数2.已知函数f(x)=-x的平方+8x,求f(x)在区间[t,t+1]上的 设函数f(x)在R上是偶函数,在区间x0上单调递减