计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B(-3,0)的一段弧rt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:27:33
xSJ@LL$b"M ((]KQɮ-A|#FXj|5O?LҮ XL3;l׫FEVt~MRǩabKlRY",㔱=U!gi1_AI7q0x󃧭h1WjKlׂz!l/b͍_gmz6 %{zR>AwvV+!BA$JϽMZt[;Ex'.-^R+w #b# Y#1UH@9 PDHD@ kMi MK˃im0!рDF*'al` Pۅ Loc' O.+@BL = >57A/:2XŐs Y^
证明曲线积分∫(xy^2-y^3)dx+(x^2y-3xy^2)dy与路径无关,并计算积分 计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0 证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy面内与路径无关,计算分值 计算坐标曲线积分 ∫(3x^2y+αx^2y)dx+(x^3-4x^2y)dy,求α若对坐标曲线积分 ∫(3x^2y+αx^2y)dx+(x^3-4x^2y)dy,与路径无关,其中L⊂ R^2,求α= 计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B(-3,0)的一段弧rt 用格林公式计算第二型曲线积分(X^2-Y)dx+(Y^2+3X)dy.L:绝对值X+绝对值Y=1 计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿曲线y=sinx到点(π,0)的弧段 计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧 证明曲线积分∫(2,1)—(1,0)(2x-y^2+1)dx+(1-x^2y)dy与路径无关的计算 计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O(0,0)到A(π,2)的一段计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y 计算曲线积分∫L(3xy+sinx)dx+(x2-yey)dy,其中L是曲线y=x2-2x上以O(0,0)为起点,A(4,8)为终点弧段 计算积分. ∫2^(3x)*3^(2x)dx 计算积分∫(x^3-y)dx-(x+siny)dy,其中L是曲线y=x^2上从点(0,0)到点(1,1)之间的一段有向弧. 计算积分∫sinx*x^2 dx 计算积分 ∫ x^2 arctan4x dx 计算曲线积分:∫(x-1)/((x-1)^2+y^2)dy -y/((x-1)^2+y^2)dx,L为包含点A(0,1)的简单闭曲线,逆时针. 设设C是点A(1,1)到点B(2,3)的直线段,计算对坐标的曲线积分∫C(x-y)dx+(x+y)dy 对坐标的曲线积分问题计算∫(L) (x+y)dy+(x-y)dx / x^2+y^2-2x+2y ,其中L为圆周(x-1)^2 + (y+1)^2 =4正向