已知a,b是非零向量、f(x)=Y (1)若a垂直于b、判断函数f(x)的奇偶性;已知a,b是非零向量、f(x)=Y(1)若a垂直于b、判断函数f(x)的奇偶性;(2)若f(x)为奇函数、证明:a和b垂直.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:18:07
x){}KuXr=0e{4 MH{: |ѽ4鼦糷<՗~ڱٴO>K۟6n{ְ &\6#6@`@/7>~Ϭħz $ΟęVE dx[fDOYaaiidk^4t!Vn~y7T;O;6<_;{b';;^4Ziu^4}8igs$Ay1n zh<"
已知a,b是非零向量、f(x)=Y (1)若a垂直于b、判断函数f(x)的奇偶性;已知a,b是非零向量、f(x)=Y(1)若a垂直于b、判断函数f(x)的奇偶性;(2)若f(x)为奇函数、证明:a和b垂直. 已知a,b是非零向量,若函数f(x)=(xa+b)(xb-a) 为奇函数,证明a⊥b 已知a,b是非零向量(1)若a⊥b,判断函数f(x)=(xa+b)(xb-a)的奇偶性 (2)若f(x)为奇函数,证明a⊥b已知a,b是非零向量(1)若a⊥b,判断函数f(x)=(xa+b)(xb-a)的奇偶性 (2)若f(x)为奇函数,证明a⊥b (1)在平行四边形ABCD中,向量AB=向量a,向量BC=向量b,向量CD=向量c,向量DA=向量d,且向量a x 向量b=向量b x 向量c=向量c x 向量d=向量d x 向量a,试判断四边形ABCD的形状(2)已知向量a和向量b都是非零 a,b是非零向量,函数f(x)=(→ax+→b)^2为偶函数是向量a垂直向量b的...怎a,b是非零向量,函数f(x)=(→ax+→b)^2为偶函数是向量a垂直向量b的...怎么证明是充要条件 已知ab向量是非零向量,且|a向量|=|b向量|=|a向量-b向量| 则a与a+b的夹角 1 已知向量a b c都是非零向量 其中任意两个向量都不平行,已知向量a+向量b 与 向量c 平行,向量a+向量c 又与向量b平行 求证 向量b+向量c与向量a平行2已知向量a=(1,-2) ,向量b=(2,3) 向量c=(1,1 求非零向量夹角已知向量a,b都是非零向量,同时满足|a|=|b|=|a-b|,求向量a与向量a+b的夹角 若a,b是非零向量,且a垂直b,|a|≠|b|,则函数f(x)=(xa+b)*(xb-a)是 已知向量a,向量b是非零向量,若丨a-b丨=丨a丨+丨b丨,则向量a,向量b应该满足的条件 已知向量a是非零向量,向量a*向量b=向量b*向量c,则向量b=向量c这句话对吗为什么应该是向量a*向量b=向量a*向量c 已知a,b是非零向量,且2a+3b=0,求证向量a与b共线 设a、b是非零向量,若f(x)=(xa+b)×(a-xb)为一次函数,则a、b的夹角是?注意a、b是向设a、b是非零向量,若f(x)=(xa+b)×(a-xb)为一次函数,则a、b的夹角是?注意a、b是向量! 设a,b是非零向量,“a垂直b”是函数f(x)=(xa-b)*(xb-a)为一次函数的什么条件 设a,b是非零向量,若函数f(x)=(xa+b).(a-xb)的图像时一条直线,则为什么必有a⊥b? ﹢已知向量a=(二分之根号三,-1/2),向量b=(1/2,二分之根号三)若存在不同时为零的实数k,t 使x向量=向量a=(t^2-k)*向量b,向量y=-s*向量a+t*向量b,且向量x⊥向量y.(1)试求函数关系式s=f(x)( 已知向量a是非零向量,且向量b≠向量c,求证:向量a*向量b=向量a*向量c能推出向量a⊥(向量b-向量c),反之 已知a向量,b向量都是非零向量,且|a向量|=|b向量|=|a向量-b向量|,求a向量与a向量+b向量的夹角.