设矩阵A4*3非零,且线性方程组AX=0有解向量,a1(1,2,3)’,a2(-1,a,b)’,a3(2,1,1)‘则a= b=?R(A)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 21:19:04
xRRP~D`q ]9qe$D PZ(Ƅ»8'Y =M[f.;wwsV񂟏F>Gg3xm/5`΃wX _hCTkJ%ER7d*mY2xH$γեv(d KW`uҳ F_Q :ѴZAN[j 5b6Y))VO+4/Cx.)lǼ#U:FPИH iEi`K^\Ps5J\+kraޯӚ.{gi9qK@j!Xw灥 65ЂkˬcdXwr/8>4&!.;t ZF!vB|:= :?in
设矩阵A4*3非零,且线性方程组AX=0有解向量,a1(1,2,3)’,a2(-1,a,b)’,a3(2,1,1)‘则a= b=?R(A)=? 设N阶矩阵A的各行元素之和均为零,且R(A)=N-1,则线性方程组AX=0的通解为? 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为? 设矩阵A=(a1,a2,a3,a4)的秩r(A)=3,且a1=a2+a3.设β=a1+a2+a3+a4,则线性方程组Ax=β的通解为 设n阶矩阵A的伴随矩阵A*不等于0,ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解则 为什么对应的齐次线性方程组AX=0的基础解系 仅有一个非零向量? 线性代数方程组若干问题1.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为?2.设A=[1,2,-3;4,t,3;3,1,1;-1,-7,-13],B为三阶非零矩阵,且AB=O,则t=?3.设三阶矩阵A的特征值为2,1,非零 设3×4矩阵A的各行元素之和为零,且A的3行向量线性无关,则齐次线性方程组AX=0的通解是x= 设三元非齐次线性方程组Ax=b的两个解围u1=(2,0,3)^T,u2=(1,-1,2)^T,且系数矩阵的 设N阶矩阵A的各行元素之和均为零,且R(A)=N-1,则线性方程组AX=0的通解为?为什么最后答案是k*(1,1.1)T,这是怎么得到的呢? 高数,线性代数题求解设三元非齐次线性方程组Ax=b的两个解为u1=(2,0,3)T,u2=(1,-1,2)T,且系数矩阵秩为2,则此线性方程组的通解为? 设A为m*n矩阵,则非其次线性方程组Ax=β有唯一解的充要条件是? 线性方程组AX=b有四个未知数,R(A)=3,且有解.如何判断AX=0的基础解系由一个非零向量构成. 设A为实对称矩阵,且IAI<0,试证 存在非零n维列向量X,使得X的转置AX 设A,B为2n阶正交矩阵,且|AB|= -1,证明存在非零向量x,使得Ax=Bx 设n阶矩阵A的各行元素均为0,且A的秩为n-1,则齐次线性方程组AX=0的通解为 设$A$是$5×6$矩阵,且秩$(A)=4$,则齐次线性方程组$AX=0$的基础解系中解向量个数为() 设矩阵A=(a1,a2,a3,a4),矩阵A的秩R(A)=3,且a2=a3+a4,b=a1-a2+a3-a4,求方程Ax=b的通解 关于线性代数的一道题设n阶矩阵A的伴随矩阵不为0,若a1 a2 a3 a4是非齐次线性方程组AX=b的互相不同的解,则对应的齐次线性方程组AX=0的基础解系为什么仅含一个非零解向量.