【矩阵】列向量α=(1,0,-1)^T,矩阵A=αα^T,n为正整数,则行列式丨aE-A^n丨=?^T表示转置

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 21:46:10
x){0/gl}0i&l?C]{:Bt jmm<{c׳Ml3_,dNJDW]8q!/xd׋k]gTOc V٪_`g3}>eΝO5>mb$ف/
秩为1的矩阵:一定可以分解为列矩阵(向量) 行矩阵(向量)的形式 秩为1的矩阵:一定可以分解为列矩阵(向量) 行矩阵(向量)的形式r(A)=1 故设A=αβ^T 然后这样算A^n很方便...秩为1的矩 【矩阵】列向量α=(1,0,-1)^T,矩阵A=αα^T,n为正整数,则行列式丨aE-A^n丨=?^T表示转置 设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量(2)证明矩阵P为可逆矩阵(3)求P^(-1)CP 设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵(E—2aa^T)^T怎么求? 矩阵及其运算设α,β为三维列向量,矩阵A=α×α∧T+β×β∧T,证明R(A)<=2 a1=(-1,1,2)^T,a2=(1,1,0)^T,a3=(1,-1,1)^T,则向量a1,a2,a3两两正交,问它们组成的矩阵是不是正交矩阵?有的书上写正交矩阵的充要条件是A各行,各列都是两两正交的单位向量.那么如题它们组成的矩阵只是 设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵 设向量x为n维列向量,x^t*x=1,令a=e-2x*x^t,证明a是正交矩阵 设m*n矩阵C,R(C)=m,证:设(m+1)*n矩阵A=(C,α)^T,m+1维列向量b=(0,…,0)^T,则Ax=b有解充要条件为R(A)=m+1()^T为矩阵的转置的意思 n维列向量a的长度小于1,证明矩阵A=E-aa^T正定 设a为n维列向量,且a∧Ta=1,矩阵A=E-aa∧T,证明A的行列式等于0 设A为n阶可逆矩阵,α为n维列向量,记Q= ( A α)(上下两个括号和在一起的构成一个矩阵) (αT 1)证明 1 |Q|=|A-ααT| 2 |A-ααT|=|A|-αTA*αQ= A α αT 1 设矩阵列向量A=K(1/3,1/2,1,0)为单位向量,则K为? 设T为正交阵,x为n维列向量,若|T|1,设T为正交阵,x为 n 维列向量,若 |Tx| = 2,则 |x|=?2,设A为 n 阶是对阵矩阵,证明:A是正定矩阵的充分必要条件是,存在正定矩阵B,使得:A = B.B3,已知矩阵 A={(0,x,1),(0,2,0) 线性代数的问题,1 T T 1,02 1 1 2,03 2+T 4+T 4,0请问这个增广矩阵矩阵是怎么化成1 0 -2T 1-T,-T0 1 3 1 ,10 0 2(2T-1) 2T-1,2T-1 另外一题A= 1 -1 -1-1 1 10 -4 -2T= -1 1 -2 (T是列向量)求满足AX=T的所有向量.答案的说明 设3阶矩阵A满足Aαi=λiαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A?7/3 0 -2/30 5/3 -2/3-2/3 -2/3 2 设A,B为n维列向量,则n阶矩阵c=ab^t的秩为r(a)= ,为什么不是等于n,答案是0或1 设A,B为3阶方阵,B的列向量都是线性方程组Ax=β的解向量,其中β=(1,2,3)T.则矩阵(AB)*的秩