如图所示,在面积为1的△PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系求出以M N为焦点,且过P的椭圆方图片点击即可

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:32:48
如图所示,在面积为1的△PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系求出以M N为焦点,且过P的椭圆方图片点击即可
xTMoG+#KpYc؅eWJ$jvOI %:N:bb1p_;6B\CO<;C []_={~;V=aѬ"aQ ,~s}Ҡ'z0|>{=oߠޠ*G 1|4{Gw~_mB6^>xnJUa:lrߙ:)o}TibmN,Te[P~,sAt%eJ/tYUr\Jk+Քm9Y]K)ŤZ^mM[N4q;E͕nhaPq?1. .*+i=)+VRL*6? KU4zwvCL%_p.P+_{t=|sZ5A!o0OyY !;gY gsP nit7F "WUнR0Q!$W#; *A8D< @@Bטhb

如图所示,在面积为1的△PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系求出以M N为焦点,且过P的椭圆方图片点击即可
如图所示,在面积为1的△PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系求出以M N为焦点,且过P的椭圆方
图片点击即可

如图所示,在面积为1的△PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系求出以M N为焦点,且过P的椭圆方图片点击即可
以MN的中点为原点,MN所在直线为x轴,建立直角坐标系.
则不妨设N(√5/2,0),M(-√5/2,0),
∴NP: y= -0.5x+(√5/4),
MP: y=2x+(4/√5),
∴P(-1/(√5),2/(√5)),
设椭圆方程为x²/a²+y²/b²=1,(a>b>0),
把P点坐标代人,得20a²+5b²=25a²b²,
又∵a²=b²+c²,c=√5/2,
∴a²=b²+(5/4),
∴b²=((√65)-1)/8,
a²=((√65)+9)/8,
即椭圆方程为
8x²/((√65)+9) +8y²/((√65)-1)=1.
本题中,若建系的方法不同,则得到的方程可能不同.

以MN为X轴,MN的中点为原点O,中垂线为Y轴,P在其上方,所以由题得:
∵kMP=1/2 kPN=-2 ∴kMP*kPN=-1 ∴∠P为直角
则设MP长为m,NP长为n,得:
∴S△PMN=mn/2=1 ===>mn=2
tanM=1/2====>m/n=2 ∴算得: m=2 ,n=1
又∵椭圆以M,N为焦点,有:
m&sup...

全部展开

以MN为X轴,MN的中点为原点O,中垂线为Y轴,P在其上方,所以由题得:
∵kMP=1/2 kPN=-2 ∴kMP*kPN=-1 ∴∠P为直角
则设MP长为m,NP长为n,得:
∴S△PMN=mn/2=1 ===>mn=2
tanM=1/2====>m/n=2 ∴算得: m=2 ,n=1
又∵椭圆以M,N为焦点,有:
m²+n²=(2c)², m+n=2a
得:a²=9/4 c²=5/4 ===>b²=9/4-5/4=1
∴椭圆方程为 : 4X²/9+Y²=1

收起

椭圆在面积为1的三角形PMN中,tan∠PMN=1/2 ,tan∠PNM=-2 ,建立适当的坐标系,求出以M、N为焦点且过点P的椭圆的方程. COME!HELP ME 在面积为1的三角形PMN中,tan角PMN=1/2,tan角MNP=-2,适当建立坐标系,求以MN为焦点,且过P点的椭圆方程. 面积为1的三角形pmn中tan∠PMN=1/2,tan∠PNM=-2,建立适当的坐标系,求出以M,N为焦点且过点P的椭圆方程 面积为1的三角形pmn中tan∠PMN=1/2,tan∠PNM=-2,建立适当的坐标系,求出以M,N为焦点且过点P的双曲线方程 在面积为1的三角形PMN中,tan∠M=1/2,tan∠N=-2,建立适当的坐标系,求以M、N为焦点且过P点的椭圆方程. 如图所示,在面积为1的△PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系求出以M N为焦点,且过P的椭圆方图片点击即可 双曲线 1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程 面积为1的三角形PMN中,tan MPN=3/4且pm+PN=根号15,建立适当的坐标系,求以MN为焦点且过P的椭圆面积为1的三角形PMN中,tan MPN=3/4且pm+PN=根号15 MN为焦点,建立适当的坐标系,求以MN为焦点且过P的椭圆PM PN 在面积为1 的三角形PMN中,tanPMN=0.5,tanMNP=-2,建立适当坐标系,求以MN为焦点且过P的双曲线 在面积为1的三角形PMN中,tanmNP=2,建立适当坐标系,求以M,N为焦点且过P的椭圆方 在面积为1的△PMN中,tanM=1/2,tanN=2,建立适当的坐标系,求出以M、N为焦点且经过P点的椭圆方程. 求教一道高二椭圆题,在面积为1的△PMN中,tanM=0.5,tanN= - 2,建立适当的坐标系,求出M,N为焦点,且过点P的椭圆方程. 在周长为48的三角形MPN 中,∠MPN=90°,tan∠PMN=3/4,求以M,N在周长为48的三角形MPN 中,∠MPN=90°,tan∠PMN=3/4,求以M,N 为焦点,且过点P的双曲线的方程.【为什么只有一种情况?】 如图所示MN为△ABC的边AB,AC上的两个定点在BC上求一点M,使△PMN的周长最短 在面积为1的三角形PMN中,tanM=1/2,tanN=-2,建立适当的直角坐标系,求出以M,N为焦点,且过P点的椭圆方程. 在面积为1的三角形PMN中,tanPMN=1/2,tanMNP=-2,建立适当坐标系,求以M,N为焦点,且过点P的椭圆方程. 在周长为48的三角形MPN中,∠MPN=90°,tan∠PMN=3/4,求以M,N为焦点,且过点P的双曲线的方程. 在周长为48的直角三角形MPN中,tan角PMN=3/4,建立适当的坐标系,求以M,N为焦点,且过点P的双曲线方程,