在三角形ABC中,AB等于6,BC等于4,点D在边BC的延长线上,角ADC等于角BAC,点E在边BA的延长线上,角E等于角DAC 设AE为X,DE为Y,求涵数关系式若三角形AED与三角形ABC相似,求CosB值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:38:56
在三角形ABC中,AB等于6,BC等于4,点D在边BC的延长线上,角ADC等于角BAC,点E在边BA的延长线上,角E等于角DAC 设AE为X,DE为Y,求涵数关系式若三角形AED与三角形ABC相似,求CosB值
xUNP~> U4/ 9}r} ! *7bO"r@g9+^a=FbMv:|352i8 .~ՙn3H|#Ի-w+n^X)SÍN')S;jLJV\;&lvW<4Jqn퇱:lmeMegAiοQQ5>va~`(rYPo\ cD?pc(@Qe\j\iȄs̊`I +'VVTzRSq 8gn##E0w)"BTHf%929XܨJ0ޫT({j5.Hk؍BVM>m;hM]|[Mm8U|UTeMygE%H$&?Ъ\lW~y'&9x711

在三角形ABC中,AB等于6,BC等于4,点D在边BC的延长线上,角ADC等于角BAC,点E在边BA的延长线上,角E等于角DAC 设AE为X,DE为Y,求涵数关系式若三角形AED与三角形ABC相似,求CosB值
在三角形ABC中,AB等于6,BC等于4,点D在边BC的延长线上,角ADC等于角BAC,点E在边BA的延长
线上,角E等于角DAC
设AE为X,DE为Y,求涵数关系式
若三角形AED与三角形ABC相似,求CosB值

在三角形ABC中,AB等于6,BC等于4,点D在边BC的延长线上,角ADC等于角BAC,点E在边BA的延长线上,角E等于角DAC 设AE为X,DE为Y,求涵数关系式若三角形AED与三角形ABC相似,求CosB值
(1)角EAD等于 角B加角BDA,已知 角BDA等于角BAC,
所以 角EAD又等于 角B加角BAC 等于角ACD
又已知 角E等于角DAC,所以三角形EAD与ACD相似
所以 AE/AC=DE/AD,即 x/AC=y/AD
又因为 角ACB等于180°减角ACD
角BAD等于180°减角EAD
之前已证角ACD等于角EAD,
所以 角ACB等于角BAD,又有 角BAC等于角BDA
所以三角形ABC与DBA相似
所以BC/AB=AC/AD,即 2/3=AC/AD
又因为 x/AC=y/AD
所以y=3x/2
(2)2/3

答案如下(1)角EAD等于 角B加角BDA,已知 角BDA等于角BAC,
所以 角EAD又等于 角B加角BAC 等于角ACD
又已知 角E等于角DAC,所以三角形EAD与ACD相似
所以 AE/AC=DE/AD,即 x/AC=y/AD
又因为 角ACB等于180°减角ACD
角BAD等于180°减角EAD
之前已证角ACD等于角EAD,...

全部展开

答案如下(1)角EAD等于 角B加角BDA,已知 角BDA等于角BAC,
所以 角EAD又等于 角B加角BAC 等于角ACD
又已知 角E等于角DAC,所以三角形EAD与ACD相似
所以 AE/AC=DE/AD,即 x/AC=y/AD
又因为 角ACB等于180°减角ACD
角BAD等于180°减角EAD
之前已证角ACD等于角EAD,
所以 角ACB等于角BAD,又有 角BAC等于角BDA
所以三角形ABC与DBA相似
所以BC/AB=AC/AD,即 2/3=AC/AD
又因为 x/AC=y/AD
所以y=3x/2
(2)2/3
谢谢哦

收起