若圆的方程为x^2+y^2-2tx+2t^2-2=0,当圆的面积最大时,求圆心坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:39:03
xRNPE[fww\e@ࢍ1AЊ?+Lomڥ{yWJƅ[RZ-¨H*.FD] lҸ:kա.G GqF9i7sh"&q h)\Y'Jxeym}c3·+nAdq?#Khu`eSGش#hʨ^o`(@!hu}+\[{4Iу~Zb?eA#
QS2-$ BjzKjB[([P*<7;@նYS]OʂõWgX}AZtBHO0466xӁ"og y4(u>,"
若圆的方程为x^2+y^2-2tx+2t^2-2=0,当圆的面积最大时,求圆心坐标
若圆的方程为x^2+y^2-2tx+2t^2-2=0,当圆的面积最大时,求圆心坐标
若圆的方程为x^2+y^2-2tx+2t^2-2=0,当圆的面积最大时,求圆心坐标
配方成标准方程
(x-t)²+y²=-t²+2
r²=-t²+2
要面积最大,则r²最大,显然当t=0时,r²有最大值2.
所以,面积最大时,圆的方程为x²+y²=2
圆心坐标为(0,0)
如果不懂,请Hi我,
圆的方程为x^2+y^2-2tx+2t^2-2=0
化简得(x-t)^2+y^2=2-t^2
圆的面积是S=πr^2=(2-t^2)π≤2π
当t=0时面积最大
此时圆方程是x^2+y^2=2圆心坐标是(0,0)
圆的方程可化简:x^2-2tx+t^2+y^2=2-t^2
(x-t)^2+y^2=2-t^2 (2-t^2为半径的平方)
因为圆的面积最大,所以圆的半径最大,所以2-t^2最大时圆的面积最大
所以当2-t^2最大时,t=0
所以圆的坐标为(0,0)
若圆的方程为x^2+y^2-2tx+2t^2-2=0,当圆的面积最大时,求圆心坐标
对任意实数t抛物线y=2x的平方+tx+3的顶点的轨迹方程为_______________________
设t为参数,y=tx,试将y=4x^2-5x^3化为参数方程
设y=tx(t为参数)则圆x^2+y^2-4y=0的参数方程为?有过程,谢谢.题目中有条件y=tx,最好使用它,谢谢。
动圆x^2+y^2-2tx+ty=0(t为参数),则圆心的轨迹为
将下列普通方程化为含t的参数方程1.y^3(2a-x)=x^4 --->化为:y=tx的形式2.y(2-x)=x^2 --->化为:y=tx的形式
设y=tx+4,t是参数,求椭圆4x^2+y^2=16的参数方程
方程x^2+y^2-2tx+4t^2y+4t^2+t^2-1=0(t为参数)是曲线方程吗?它所表示的曲线特点是?
若关于x的方程3tx^2+(3-7t)x+4=0的两个实根0
已知圆的方程x²+y²-2tx+2t²-2=0的t的取值范围和圆面积最大时圆的方程
双曲线tx^2+y^2-1=0的一条渐近线与方程2x+y+t=0垂直,则双曲线的离心率为A.√5B.√5/2C.√3/2D.√3
已知函数f(x)=2x^3+3/2tx^2-3t^2xf(x)=2x^3+3/2tx^2-3t^2x+(t-1)/2,x∈R,其中t∈R(1)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程
设a为n维内积空间的一个单位向量,定义V中的变换T为Tx=x-2(a,x)a,求Tx的长度.
已知m,n是方程x^2-2tx+t+2=0的两个实根,求y=m^2+n^2的最小值
已知m,n是方程x^2-tx+t+2=0的两个实根,求y=m^2+n^2的最小值
已知m,n是方程x方-2tx+t+2=0的两个实数根,求y=m方+n方的最小值.
若直线x+y-1=0与圆x^2+y^2-tx+2ty+t+1=0相切,则实数t等于?
求关于x的二次函数y=x^2-2tx+1在-1≤x≤1上的最大值(t为常数)