已知函数f(x)=a-1/2^x+1(a∈R) 1.证明函数f(x)在(-∞,∞)上是增函数 2.确定a的值,使f(x)为奇函

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:43:10
已知函数f(x)=a-1/2^x+1(a∈R) 1.证明函数f(x)在(-∞,∞)上是增函数 2.确定a的值,使f(x)为奇函
x){}K}6uC=t&Uhj$> )XlFʧsVY:1PɎg3?]4NHuOJ|>i'{>ٱv:"A;"`ٴ6O}Yi`hrr`qFv::^dGu?;y 5

已知函数f(x)=a-1/2^x+1(a∈R) 1.证明函数f(x)在(-∞,∞)上是增函数 2.确定a的值,使f(x)为奇函
已知函数f(x)=a-1/2^x+1(a∈R) 1.证明函数f(x)在(-∞,∞)上是增函数 2.确定a的值,使f(x)为奇函

已知函数f(x)=a-1/2^x+1(a∈R) 1.证明函数f(x)在(-∞,∞)上是增函数 2.确定a的值,使f(x)为奇函
(1)
方法一:f(x)=a-1/(2^x+1),f'(x)=2^xln2/(2^x+1)^2>0,所以不论a为何实数f(x)总是为增函数;
方法二:在R上任取x1,x2且x1