f(xy)=f(x)+f(y)为什么不是常数函数?对于任意x、y∈R,都有f(x·y)=f(x)+f(y)那么如果令y=0,求得f(0)=f(x)+f(0),f(x)=0 x∈R

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:43:09
f(xy)=f(x)+f(y)为什么不是常数函数?对于任意x、y∈R,都有f(x·y)=f(x)+f(y)那么如果令y=0,求得f(0)=f(x)+f(0),f(x)=0 x∈R
x͐N@_# Mz2襽'mMmق;r+8-p'fgwoG.Դ BFMs'#̭ CLqcKF)/׵QҔw-'Ϻ"|dVMK4I"%gwJwJ*-8-2H-5cxK@2Y2X-UK }Vmu(0(Kma3$6=lxD3sҍ=)sI[DC8u#6/0qXq=\)4XE {+V[p>

f(xy)=f(x)+f(y)为什么不是常数函数?对于任意x、y∈R,都有f(x·y)=f(x)+f(y)那么如果令y=0,求得f(0)=f(x)+f(0),f(x)=0 x∈R
f(xy)=f(x)+f(y)为什么不是常数函数?
对于任意x、y∈R,都有f(x·y)=f(x)+f(y)
那么如果令y=0,求得f(0)=f(x)+f(0),f(x)=0 x∈R

f(xy)=f(x)+f(y)为什么不是常数函数?对于任意x、y∈R,都有f(x·y)=f(x)+f(y)那么如果令y=0,求得f(0)=f(x)+f(0),f(x)=0 x∈R
很简单 题设中并没有给出函数的定义域
比如简单的对数函数y=lnx,就能满足题目的条件
但是它的定义域是(0,+∞)

因为还有其他的数值,可以符合。。

谁说不是啊?? 就是f(x)=0