已知a,b,c分别为△ABC的三个内角A,B,C的对边,acosC+√3asinC-b-c=0.(Ⅰ)求A; (Ⅱ)若a=2,△ABC的面积为√3,求b,c.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:38:58
xRN0VxZIdC" It࣐^
zx|Mg"4wz$SyX%z`ł)(x
'|T$mcq5w}H4rtvShxFW%}Zwno-AbDdz*d.)w@RٲǍ交Hol)ͤeIDb!_lH" (>")mģOU
9]0tUc #n$,q5G!Q *FRޙuF
|a=UM=-4&jaJ@yjo#\:셿*%X\V$/ >
已知a,b,c分别为△ABC的三个内角A,B,C的对边,acosC+√3asinC-b-c=0.(Ⅰ)求A; (Ⅱ)若a=2,△ABC的面积为√3,求b,c.
已知a,b,c分别为△ABC的三个内角A,B,C的对边,acosC+√3asinC-b-c=0.(Ⅰ)求A; (Ⅱ)若a=2,△ABC的面积为√3,求b,c.
已知a,b,c分别为△ABC的三个内角A,B,C的对边,acosC+√3asinC-b-c=0.(Ⅰ)求A; (Ⅱ)若a=2,△ABC的面积为√3,求b,c.
sinAcosC+√3sinAsinC-sinB-sinC=0
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC-cosAsinC-sinC=0
√3sinA=1+cosA
因tan(A/2)=(sinA)/(1+cosA)=√3/3
得:A/2=30°,即A=60°
二问:S=1/2 * bcsinA,由一问可知sinA=√3/2,所以bc=4
由余弦定理得,b^2+c^2-a^2=2bc*cosA ,联立bc=4和余弦定理公式和条件a=2,可得b=2 c=2
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且
已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+√3 asinC-b-c=0,求A
已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+√3 asinC-b-c=0,求A
已知A,B,C为△ABC的三个内角,且A
已知三角形ABC的三个内角分别为A,B,C,证明cosA=-cos(B+C)如何证明
已知abc分别为△ABC三个内角A.B.C的对边,2bcosC=2a-c求B已知abc分别为△ABC三个内角A.B.C的对边,2bcosC=2a-c①求B②若Abc的面积为根号3求b的值
已知三角形ABC的三个内角A,B,C成等差数列,且三个内角A,B,C的对边分别为a,b,c,求证求证 1/(a+b)+ 1/(b+c)=3/(a+b+c)
已知ΔABC的三个内角A、B、C满足2B=A+C,且三个内角的对边分别为a,b,c.求证(1/a+b)+(1/b+c)=3/a+b+c
已知三角形ABC的三个内角A,B,C(A
已知△ABC的三个内角A,B,C的a,b,c成对边分别为a,b,c,若等比数列,且A,B,C成等差数列求角B的大小,并判断△ABC的形状
已知△ABC的三个内角ABC所对边长分别为abc,三点A(0,0)B(a+c,a-b),C(b,a-c)共线,则∠C=?
已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c,求证1/(a+b)+1/(b+c)=3/(a+b+c)
已知a.b.c分别为△ABC三个内角A.B.C的对边,且满足2bcosC=2a .求B已知a.b.c分别为△ABC三个内角A.B.C的对边,且满足2bcosC=2a.求B
已知a,b,c分别为三角形ABC三个内角A,B,C的对边acosC+根号3asinC-b-c=o.求A
已知a,b,c分别为△ABC三个内角ABC的对边 c=√3asinC-ccosA (1)求A(2)若a=2 △ABC的面积为√3 求b,c
已知a、b、c分别为△ABC的三个内角A、B、C的对边,且a、b、c成等差数列,角B=60°,则△ABC的形状为?
设△ABC的三个内角为A,B,C三边长分别为a,b,c.求证:(a-b)/c=sin(A-B)/sinC
已知a,b,c分别为三角形ABC三个内角A,B,C的对边,√3asinC-ccosA-c=0 求A已知a,b,c分别为三角形ABC三个内角A,B,C的对边,√3asinC-ccosA-c=0 求A 2.若a=2 三角abc面积为√3 求b c