已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:45:44
已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围.
xRN@~O(h4{!" O*B(t[8ngfaI>7R44к$c :BђrA~Y}؋-Cؐ9jJ g4n]DNn~qZP j_+)Z7.J$jG#4cZͫjHGQaV Iud̲Ha Jl43-z i&uRSy3UceuflIPDe"p(Fu2[+pU#鎎azඌ@TCK#&.A5>`1+#sB

已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围.
已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围.

已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围.
这是一个知识点,最好自己总结一下:
椭圆中,张角最大处是短轴的顶点;
题目说:向量MF1×向量MF2=0的点总在椭圆内部,即满足MF1垂直于MF2的点M均在椭圆内部.
所以:椭圆上的最大张角也是一个锐角;
画出短轴上顶点B和左焦点F1的连线,即角F1BO要小于45度,则角OF1B大于45度,
三角形中大边对大角原则:BO>OF1,即b>c
即b²>c²,即:a²-c²>c²,即a²>2c²,所以:c²/a²

已知F1、F2是椭圆的两个焦点,满足向量MF1·向量MF2=0的点M点在椭圆内部,则取值范围是 已知F1、F2是椭圆的两个焦点,满足向量MF1·向量MF2=0的点M点在椭圆内部,则取值范围是 已知F1,F2是椭圆的两个焦点,满足向量MF1*MF2=0的点总在椭圆内部,则该椭圆离心率的范围是? 已知F1,F2是椭圆的两个焦点,满足向量MF1*MF2=0的点总在椭圆内部,则该椭圆离心率的范围是? 已知F1,F2是椭圆的两个焦点,满足向量MF1*向量MF2=0的点M总在椭圆内部,求e的取值范围 已知f1,f2是椭圆的两个焦点,满足向量Mf1*Mf2=0的点M总在椭圆内部,则椭圆的离心率的范围 已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围. 已知f1,f2是椭圆的两个焦点,满足向量Mf1*Mf2=0的点M总在椭圆内部,则椭圆的离心率的范围如何确定M的运动轨迹为圆 已知椭圆,P为椭圆上一点,F1,F2为左右两个焦点.求向量PF1×向量PF2的最大值 已知椭圆,P为椭圆上一点,F1,F2为左右两个焦点.求向量PF1×向量PF2的最大值. 已知F1,F2是椭圆的两个焦点,M为椭圆上一点,则向量MF1·向量MF2的最大值为多少? 已知F1,F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°求椭圆离心率用向量怎么做 已知F1.F2是椭圆的两个焦点,满足MF1垂直MF2的点M总在椭圆内部,则椭圆离心率的取值范围是多少? 椭圆的几何性质 (29 11:14:13)已知F1,F2是椭圆的两个焦点,满足向量MF1乘以向量MF2=0的点M总在椭圆内部,则椭圆离心率的取值范围是多少.在三角形ABC中,AB=BC,COSB=-7/18,若以A,B为焦点的椭圆经过点C,则 F1,F2是椭圆的两个焦点,满足向量MF1*向量MF2=0的点M总在椭圆内部,则椭圆离心率的取值范围是要原因 已知椭圆的左右两个焦点F1(-根号2,0)F2(根号2,0)椭圆上一点A(根号2,1)(1)求该椭圆的标准方程(2)设动点P满足向量OP=向量OM+2向量ON,其中M、N是椭圆上的点,直线OM与ON的斜率之积为-1/2,问:是否存 已知椭圆的两个焦点为f1,f2,且均在x轴上,在椭圆上一点m(2根号6/3,根号3/3)满足向量mf1*mf2=0,求椭圆方 椭圆的两个焦点F1、F2,M点是椭圆内一点,向量MF1×向量MF2=0,求椭圆离心率的取值范围?请赐教!