a,b是锐角,求证(sina)^3/cosb + (cosa)^3/sinb =1 成立的充要条件是a+b=π/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:37:20
a,b是锐角,求证(sina)^3/cosb + (cosa)^3/sinb =1 成立的充要条件是a+b=π/2
xOJ@Ư2 HԅI6CtZ .ܥjAB"բH(ֶCL-|I-Tt/Kv|La8(Kvђ7ŽMFDC CCڈN#Zeּ :j^'|%S,[`ooX{[]:gw`˶rad +"r.1aH Mf7~VSߜ(Fn e4&BoXM,;?;)a@.:W!ACG#@pMQ ߯§c g6'Ydke,Ml~l~l:v*x^

a,b是锐角,求证(sina)^3/cosb + (cosa)^3/sinb =1 成立的充要条件是a+b=π/2
a,b是锐角,求证(sina)^3/cosb + (cosa)^3/sinb =1 成立的充要条件是a+b=π/2

a,b是锐角,求证(sina)^3/cosb + (cosa)^3/sinb =1 成立的充要条件是a+b=π/2
比较直接的是用Cauchy不等式.
由a,b为锐角,有sin(a),cos(a),sin(b),cos(b) > 0.
sin(a+b) = sin(a)cos(b)+sin(b)cos(a)
= (sin(a)cos(b)+sin(b)cos(a))·(sin³(a)/cos(b)+cos³(a)/sin(b))
≥ (sin²(a)+cos²(a))²
= 1.
而sin(a+b) ≤ 1,于是sin(a+b) = 1.
又0 < a+b < π,只有a+b = π/2.
Cauchy不等式也可以换成均值不等式.
sin(a+b)+1
= sin(a)cos(b)+sin(b)cos(a)+sin³(a)/cos(b)+cos³(a)/sin(b)
= (sin(a)cos(b)+sin³(a)/cos(b))+(sin(b)cos(a)+cos³(a)/sin(b))
≥ 2sin²(a)+2cos²(a)
= 2.