二次函数所有公式 比如顶点式等

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:17:23
二次函数所有公式 比如顶点式等
xXKo+HMKw7D7}(Ʌt`E5\zr$^i6𤿐f͗%ǗVzWuUu>hUm9۰l.feHM>3]sM'{p8 )/O"dêd/Cl`b/\,4LpuĞ+8ٟԁ;XLRq pgHs5k&YI2Z}'df2]rJ"0'I$z&.b*We DCvkHX|\(A42?W/_<'OœjMVmϣ<3}9}̎݃u}/3$tH4CGzb#'idfڀ@f0MŸI{4v9nW,r %9a<ָ7һ]?#aZ#:6Ytk=gUKIwd f$:(}]:g}C6vVS(#bk-LW;cwqlNBcwFІ/%&~9]c7Nq ܃r3goB8k5rN_0Nq/"68 ("iAO;. R׈\L]Z <\C>>N"3#1uu>$Xby *r*66POo_Y+uȂ<&nsI`}{A?^Icȴ*WE|N3pd,0>0 äSrY/{N B X=zenKWǍEq @ gYy:qݸf~DYǺ ʁ* 1?PɀZ(8ЙP.'}+S?A.Y_߀n9jL+E*Ve QX2$dyk"WE5oۨs@ MjN3UE{U᪓w=D!6āsEsniWKL7k6<_&h7LR> JLx ªU={U$V[xCF{eǹYcH=qgBhrIUua.96ʄ3wA![|C%HeNfQ=͹MVum :+dQSҗKw#j轎b;!1r_/yBڀؼ/{\b-tۈ橓?)+A,ep;뵸 *,4^{Y'}mj| ! /.Ʉvrv5_G\ZY-H1i;ikv 0h_+|ܚ-{5%Ѻ|&EЯ}exԸW"I?T]fsAѽ}B-CBdΆoj4B崽aU_ rݫuk,mfGj^r(\K]W+zOПޣgy~)C&'=EB$]nYUim깸rS rD#}!} V-Ȏ ?z;ʭ{Z>e`~I(yA10p8N3+N"OhRV%}0$pP5л,V|y?&\gWIb_}x߿| 2@'gWv@U'{lwjuA cgrns]7)W8x}/z(k:`$ Cuq$d3_v -gΒ:ya<6:OOς`8 R kHHϘ7Nx;FFG#@;2?NG3yf_v~_//

二次函数所有公式 比如顶点式等
二次函数所有公式 比如顶点式等

二次函数所有公式 比如顶点式等
二次函数
目录·I.定义与定义表达式
·II.二次函数的三种表达式
·III.二次函数的图像
·IV.抛物线的性质
·V.二次函数与一元二次方程
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数.
二次函数表达式的右边通常为二次三项式.
x是自变量,y是x的函数
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
______
h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线.
IV.抛物线的性质
1.抛物线是轴对称图形.对称轴为直线
x = -b/2a.
对称轴与抛物线唯一的交点为抛物线的顶点P.
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上.
3.二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.
|a|越大,则抛物线的开口越小.
4.一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右.
5.常数项c决定抛物线与y轴交点.
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点.
Δ= b^2-4ac=0时,抛物线与x轴有1个交点.
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根.
函数与x轴交点的横坐标即为方程的根.
以下是在北京四中远程教育上看到的好资料``!
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
顶点坐标
(0,0)
(h,0)
(h,k)
(-b/2a,[4ac-b^2]/4a)
对 称 轴
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目.因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2;+bx+c(a,b,c为常数,a≠0)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(...

全部展开

I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2;+bx+c(a,b,c为常数,a≠0)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图象
在平面直角坐标系中作出二次函数y=x^2;的图象,
可以看出,二次函数的图象是一条抛物线

收起