设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线y^2/3-x^2=1,的离心率互为倒数,且内切于圆x^2+y^2=4.求椭圆方程.过点(0,√3)作直线L1与椭圆交于A,B,以线段AB为直径的圆能否过坐标原点,所能求直
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 13:38:00
xS[oP0&J/k#QJϚ@OKIxhv6J
&cj"LʀA⾉i_ϰw=s($HQ1+
2,\2=cO|6* ooxNETg|hD;9:"]RŪ(WŘ5ҭƕs{
ZEyݶO/GG64cNTi Zl_9YX!3֞ &;}SiF}5G:P:1z>mZ'B2qr{T/zo2ގurBCaL1(&ec1m9|njZ
ܲΆݬ`㧰"lg{+*pŜ|"]Cv_A!鶿He
ʲ(s.Oi %JrJtI^䗞G4s,Q
>*` * t_g\RJ,\#<+Do(Xq<xL.E8.dgMqK=HI:Vo$Kѿ+!0))^%2
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线y^2/3-x^2=1,的离心率互为倒数,且内切于圆x^2+y^2=4.求椭圆方程.过点(0,√3)作直线L1与椭圆交于A,B,以线段AB为直径的圆能否过坐标原点,所能求直
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线y^2/3-x^2=1,的离心率互为倒数,且内切于圆x^2+y^2=4.求椭圆方程.过点(0,√3)作直线L1与椭圆交于A,B,以线段AB为直径的圆能否过坐标原点,所能求直线AB的斜率,若不能说明理由.快现神通啊
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线y^2/3-x^2=1,的离心率互为倒数,且内切于圆x^2+y^2=4.求椭圆方程.过点(0,√3)作直线L1与椭圆交于A,B,以线段AB为直径的圆能否过坐标原点,所能求直
双曲线x²-y²=1的离心率是√2,则椭圆的离心率e=√2/2,圆x²+y²=4的半径是R=2,则:
a=2,c=√2,所以b²=a²-c²=2,得椭圆方程是:y²/4+x²/2=1
直线y=√2x+m代入椭圆中,化简,得:
5x²+4√2mx+2m²-4=0
x1+x2=-4√2m/5,x1x2=-4/5
|AB|=[√(1+k²)]×|x1-x2|=[√(240-24m²)]/5
点P到直线AB的距离d=|m|/√3
则:S=(1/2)×d×|AB|=(1/10)√[80m²-8(m²)²]=(1/10)√[-8(m²-5)²+200]
则S的最大值是(1/10)√200=√2,此时m²=5,即m=±√5
椭圆的数学题,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),经过点M(1,3/2),其离心率为1/2设直线l:y=kx+m(|k|
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点为F1F2,若椭圆上有一点M,使得F1PF2=120°,试求该椭圆的离心率设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点为F1,F2,若椭圆上有一点M,使得角F1PF2=120°,试求该椭圆的离
关于过已知两点求椭圆方程问题按照老师所讲,已知两点求过两点椭圆方程时,需分类讨论:椭圆在x轴上时 设椭圆为x^2/a^2+y^2/b^2 此时a>b>0椭圆在y轴上时 设椭圆为x^2/b^2+y^2/a^2 此时仍a>b&
设M为椭圆X^2/a^2+y^2/b^2=1上的一点,F1,F2为椭圆的焦点,若角MF1F2=75° ,∠MF1F2=15°,则椭圆的离心
设M为椭圆X^2/a^2+y^2/b^2=1上的一点,F1,F2为椭圆的焦点,若角MF1F2=75° ,∠MF1F2=15°,则椭圆的离心
【高二数学】已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为M(0,1),离心率e=√6/3.设直线l与椭圆交与A、B已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为M(0,1),离心率e=√6/3.设直线l与椭圆交与A、B两点,坐标O
已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向量OB=已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足 向量O
已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向量OB=已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足 向量O
(1/2)设f1,f2分别是椭圆x^2/4+y^2=1的左右焦点 设过定点m(0,2)的直线l与椭圆交于不同的两点a,b,且角...(1/2)设f1,f2分别是椭圆x^2/4+y^2=1的左右焦点 设过定点m(0,2)的直线l与椭圆交于不同的两点a,b,且角a
已知椭圆x^3/3b^2+y^2/b^2=1过椭圆右焦点的直线y=x+m与椭圆交于A、B两点设M为椭圆上任意一点,且向量OM=λ向量OA+μ向量OB试证明λ^2+μ^2为定值
设椭圆M:y^2/a^2+x^2/b^2=1,(a>b>0)的离心率与双曲线 x^2-y^ 2=1的离心率互为倒数且内切与圆x^2+y^2=41.求椭圆M的方程2.若直线y=根号2x+m交椭圆与A 、B两点,椭圆上一点P(1,根号2),求△PAB面积的最大值
设A,B分别为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点,(13/2)为椭圆上一点椭圆长半轴的长等于焦距1、求椭圆方程(这一问,我算出来是:x^2/4+y^2/3=1,2、设P(4,m)(m不等于0)若直线AP,BP分别于椭圆相
已知m>1,直线l:x-my-m^2/2=0椭圆C:x^2/m^2+y^2=1,F1、F2分别为椭圆的左右焦点.已知m>1,直线l:x-my-(m^2)/2=0椭圆C:x^2/m^2+y^2=1,F1、F2分别为椭圆的左右焦点.设直线l与椭圆C交于A,B两点,三角形AF1F2,三
已知椭圆x^2/a^2+y^/b^2=1的离心率为1/2,且椭圆的中心关于直线x-3y-10=0的对称点在椭圆的右准线上(1)求椭圆方程(2)设A(M,0),B(1/m,0)(0<m<1)是x轴上的两点,过点A作斜率不为0的直线与椭圆交于M
设椭圆E:x^2/a^2+y^2/b^2=1过点M(2,根号2),N(根号6,1)两点,O为坐标原点
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)过点M(根2,1),且左焦点为F(-根2,0).求椭圆方程
设椭圆M:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F(1,0),其离心率为1/2,(1)求椭圆C的方程
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为B(0,根号3),F1,F2分别是椭圆的左,右焦点,离心率e=1/2直线l:y=x+1与椭圆交于M、N两点.求椭圆C的方程;求弦MN的长