f(x)有连续导数且f(0)=0f'(0)≠0F(x)=∫x0(x2-t2)f(t)dt,当x→0时,F‘(x)与xk是同阶无穷小,则k

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:37:55
f(x)有连续导数且f(0)=0f'(0)≠0F(x)=∫x0(x2-t2)f(t)dt,当x→0时,F‘(x)与xk是同阶无穷小,则k
x)KӨ|6yw}~ϳ옒aiku.0p{NG+ 4*tK44J4SJt\mt5̀*}"ٌO'Wn_il"Xfy$فeZ

f(x)有连续导数且f(0)=0f'(0)≠0F(x)=∫x0(x2-t2)f(t)dt,当x→0时,F‘(x)与xk是同阶无穷小,则k
f(x)有连续导数且f(0)=0f'(0)≠0F(x)=∫x0(x2-t2)f(t)dt,当x→0时,F‘(x)与xk是同阶无穷小,则k

f(x)有连续导数且f(0)=0f'(0)≠0F(x)=∫x0(x2-t2)f(t)dt,当x→0时,F‘(x)与xk是同阶无穷小,则k
拍照吧

设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明 高数积分题一道,设f(x)有连续导数且F(x)=∫(0→x)f(t)f'(2a-t)dt设f(x)有连续导数且F(x)=∫(0→x)f(t)f'(2a-t)dt,试证:F(2a)-2F(a)=(f(a))^2-f(0)f(2a). f(x)在[0,+∞)有连续导数,f''(x)>=k>0,f(0) f(x)在[0,+∞)有连续导数,f'(x)>=k>0,f(0) f(x)在[0,+∞)上有二阶连续导数,且f''(x)≥a>0,f(0)=0,f'(0) 设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)| 设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明: 设f(x)有连续导数,且f(0)=0,f'(0)≠0,设f(x)有连续导数,且f(0)=0,f'(0)≠0,F(x)=∫[0,x](x^2-t^2)f(t)dt,当x→0时,F’(x)与x^k是同阶无穷小,则k=? 设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a 设函数f(x)在[a,b]上有连续导数,且f(c)=0,a 设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值? 设f(x)有连续导数,且f(0)=0,f'(0)≠0,F(x)=∫[0,x](x^2-t^2)f(t)dt,当x→0时,F’(x) 设函数f(x)在[0,b]上有连续的导数,且f(0)=0,记M=max|f'(x)|0 f(x)在[0,1]上有连续导数,f(0)=0,0 设f(x)在[0,1]上有连续导数,f(0)=0,0 设f(x)在[0,1]上有连续导数,f(0)=0,0 设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?(题目中的“[ ]”是绝对值、“li 设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|