若0≤x≤π,求函数y=sin2x+sinx-cosx的最大值和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 03:47:54
若0≤x≤π,求函数y=sin2x+sinx-cosx的最大值和最小值
xTN@~AVu"A$C{kITOLĘHRwn.@GmffvN͢5< <}m k.. 7KnxEhAO~mmi/-zy?mGr*%fy.P"yն @A M;)SuģXGI$3R'hE !]3Z֖"t| %Q_ wªA{cϞUWHQE4. DJՂ5;+3'VXE͚S`l) )$tŖ/}\Kcu{͏&mըOu#<*"ѕ9v8Bp' v:b!Б) >0gy+Oܵ4 }´fzVXu؅F:'FLwA $l

若0≤x≤π,求函数y=sin2x+sinx-cosx的最大值和最小值
若0≤x≤π,求函数y=sin2x+sinx-cosx的最大值和最小值

若0≤x≤π,求函数y=sin2x+sinx-cosx的最大值和最小值
由于0≤x≤π,故-pi/4≤x-pi/4≤3*pi/4.
则-(根号2)/2≤sinx(x-pi/4)≤(根号2)/2
y=sin2x+sinx-cosx
=1-(sinx-cosx)^2+(sinx-cosx)
=-[(sinx-cosx)-1/2]^2+5/4
=-[根号2倍的sin(x-pi/4)-1/2]^2+5/4
所以当sinx(x-pi/4)=-(根号2)/2时,y最小=-1,
当sinx(x-pi/4)≤1/2时,y最大=5/4.

y=sin2x+sinx-cosx
=1-(sinx-cosx)^2+(sinx-cosx)
=5/4-(sinx-cosx-1/2)^2
=5/4-[根号2倍的sin(x-pi/4)-1/2]^2
0≤x≤π ==> -1/2≤根号2倍的sin(x-pi/4)≤根号2
==>1/4≤5/4-[根号2倍的sin(x-pi/4)-1/2]^2≤5/4

全部展开

y=sin2x+sinx-cosx
=1-(sinx-cosx)^2+(sinx-cosx)
=5/4-(sinx-cosx-1/2)^2
=5/4-[根号2倍的sin(x-pi/4)-1/2]^2
0≤x≤π ==> -1/2≤根号2倍的sin(x-pi/4)≤根号2
==>1/4≤5/4-[根号2倍的sin(x-pi/4)-1/2]^2≤5/4
即 1/4≤y≤5/4
所以,函数y=sin2x+sinx-cosx的最大值为5/4,最小值1/4。

收起

令sinx-cosx=t
则sin2x=2sinxcosx=1-t^2
y=1-t^2+t=-(t-1/2)^2+5/4
x∈[0,π]
t=√2sin(x-π/4)∈[-√2/2,1]
所以ymax=5/4,ymin=(1-√2)/2

高中的?