w1和w2是维线性空间v的两个n-1维子空间,则w1和w2的并的最大维数是n-1,最小维数是n-2判断正误,对的证明,错的举反例.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 04:14:34
x)+7|:ٌwoykWz9}KY-Ov,ycU!P 3J$ixd9PճFu耄6# =XlgkX^@}/7>ѧrLm>gTOO#yv69耂Dź}
;zc p#d@yCMuh dG Aq:'y6yvАs:I n
w1和w2是维线性空间v的两个n-1维子空间,则w1和w2的并的最大维数是n-1,最小维数是n-2判断正误,对的证明,错的举反例.
w1和w2是维线性空间v的两个n-1维子空间,则w1和w2的并的最大维数是n-1,最小维数是n-2
判断正误,对的证明,错的举反例.
w1和w2是维线性空间v的两个n-1维子空间,则w1和w2的并的最大维数是n-1,最小维数是n-2判断正误,对的证明,错的举反例.
错.
反例:设 w1 的基为 (1,0,0)',(0,1,0)
w2 的基为 (0,0,1)'
则w1与w2的并为 R^3,维数为3
不对
高等代数线性空间与线性变换若W1,W2是n维线性空间V的两个线性子空间,dim(W1+W2)-1=dim(W1∩W2),证明W1+W2与其中的一个子空间相等,W1∩W2与另一个子空间相等.
w1和w2是维线性空间v的两个n-1维子空间,则w1和w2的并的最大维数是n-1,最小维数是n-2判断正误,对的证明,错的举反例.
求解:两个线性子空间w1和w2,为什么w1+w2是线性子空间?谢谢大家了
设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:存在V的线性变换A,使A的值域是W1 ,核是W2
假设W1,W2是向量空间V的子空间,W1+W2={v|v=w1+w2},w1属于W1,w2属于W2,求证W1+W2是V的子空间
W1和W2是V的子空间,证明1.(W1+W2)的正交补=W1正交补+W2正交补2.(W1∩W2)的正交补=W1正交补+W2正交补
七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2
证明不变子空间w1,w2的和w1+w2也是不变子空间
设W1,W2是向量空间V的子空间.证明:如果V的一个子空间既包含W1又包含W2,那么它一定包含W1+W2.
w1,w2是V的非平凡子空间,则存在a属于V,是a不属于w1,w2同时成立
设W1,W2是数域F上向量空间V的两个字空间,a,b是V的两个向量,其中a属于W2,但a不属于W1,又b不属于W2,证明:(1)对于任意k属于F,b+ka不属于W2(2)至多有一个k属于F,使得b+ka属于W1.
设W1,W2是数域F上向量空间V的两个字空间,a,b是V的两个向量,其中a属于W2,但a不属于W1,又b不属于W2,证明:(1)对于任意k属于F,b+ka不属于W2(2)至多有一个k属于F,使得b+ka属于W1.
设有R^3的两个集合 W1={(x1,x2,x2)|x1-2x2+2x3=0}; W2={(x1,x2,x3)|x1+0.5x2+3=1} 证明 W1是R^子空间 W2不是
关于线性空间在F(4)中,已知 W1={(x1,x2,x2,0)|x1,x2属于F} W2={(x1,x2,-x2,x3)|x1,x2,x3属于F} 求子空间W1交W2和W1+W2
线性空间的子空间一定有补空间吗?已知线性空间U是线性空间V的子空间,求证存在线性空间W使得U交W={0}U+W=V其中+代表直和.或者您能举出反例也可.一楼的论证对有限维是没问题的,但对于U和
设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.
线性空间,线性变换,特征值与特征向量设V是复数域上的n维线性空间,s,t是V的线性变换,且st=ts.求证:(1)如果λ0是s的特征值,那么λ0的特征子空间V(λ0)是t的不变子空间;(2)s,t至少有一个公
证明线性空间V的s个非平凡子空间的并不可能是V或者证明S个不同的n-1维的V的子空间的并不是线性空间.S=2的时候容易证,s大于2的时候如何证?要有严谨的证明.