设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:34:15
x){n^tݼw>_/gl {}Kc _'9>t'w|iÞ"Vc&8]C Zӡ~Ov @'0'v, l:D"}4P[NOl\>+
@@MLcmD}Ă@E0MmUpTxvl@
-ȏ
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta
设A是n阶实对称矩阵,P是n阶可逆矩阵.
已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).
(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta
由A对称,(P^-1AP)^T = P^TA(P^T)^-1
由 Aa=ra
得 [P^TA(P^T)^-1](P^T)a = rP^Ta
故 (B) 正确
设A是n阶实对称矩阵 P是n阶可逆矩阵 ,已知n维列向量β是属于特征值λ的特征限量,则矩阵(P^( -1) AP)倒置的上面问题只显示了一半设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量β是属于特征
设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)
线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆.
设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵
设A是n阶可逆矩阵,证明,存在正定对称阵P以及正交矩阵U使得A=PU
设A是一个n阶矩阵,P是一个n阶可逆矩阵,证明:具体题目请看图片
设A是n阶正定矩阵,求证:存在n阶可逆矩阵P使得A=PtP
设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵.
设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵.
设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵
A是n阶实对称矩阵
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta
刘老师:设A是n阶反对称矩阵,E是n阶单位矩阵.证明:e+a可逆 怎么证明?
设矩阵A与P都是n阶矩阵,且A为对称矩阵,证明P'AP也是 对称矩阵.
设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵
设A是n阶实对称证明a可逆的充分必要条件是存在n阶实矩阵b使得AB+B转置A是正定