f(x)=(lnx +1)/e的x次方 g(x)=xf′(x)证明 对任意x>0 g(x)<1+e的-2次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:30:20
f(x)=(lnx +1)/e的x次方 g(x)=xf′(x)证明 对任意x>0 g(x)<1+e的-2次方
x)K{N[ mCMZ*YlNtlEڣMP΋f)<]Zb Jc 2CbMR>i~

f(x)=(lnx +1)/e的x次方 g(x)=xf′(x)证明 对任意x>0 g(x)<1+e的-2次方
f(x)=(lnx +1)/e的x次方 g(x)=xf′(x)证明 对任意x>0 g(x)
<1+e的-2次方

f(x)=(lnx +1)/e的x次方 g(x)=xf′(x)证明 对任意x>0 g(x)<1+e的-2次方
f(x)=(lnx+1)/e的x次方,g(x)=(x2+x)f'(x),证明当x>0时,g(x)